首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of LysN contains an OB-fold motif composed of a structurally conserved five-stranded beta-barrel capped by a poorly conserved alpha-helix between strands beta3 and beta4. Two additional alpha-helices, unique to the LysN structure, flank the N terminus of the OB-fold. The stability of LysN to unfolding has been investigated with NMR native state hydrogen exchange measurements as a function of guanidinium hydrochloride concentration, and equilibrium unfolding transitions monitored by ellipticity at 222 nm and fluorescence at 350 nm. The spectrophotometric measurements suggest an apparent two-state unfolding transition with DeltaGu(0) approximately 6 kcal/mol and m approximately 3 kcal/(molM). By contrast, NMR hydrogen exchange measurements manifest a distribution of DeltaGu(0) and m values which indicate that the protein can undergo subglobal unfolding. The largest DeltaGu(0) values from hydrogen exchange are for residues in the beta-sheet of the protein. These values, which reflect complete unfolding of the protein, are between 3 and 4 kcal/mol higher than those obtained from circular dichroism or fluorescence. This discrepancy may be due to the comparison of NMR hydrogen exchange parameters measured at residue-level resolution, with spectrophotometric parameters that reflect an unresolved super position of unfolding transitions of the alpha-helices and beta-strands. The largest DeltaGu(0) values obtained from hydrogen exchange for the subset of residues in the alpha-helices of the protein, agree with the DeltaGu(0) values obtained from circular dichroism or fluorescence. Based on the hydrogen exchange data, however, the three alpha-helices of LysN are on average 3 kcal/mol less stable than the beta-sheet. Consistent with the subglobal unfolding of LysN evinced by hydrogen exchange, a deletion mutant that lacks the first alpha-helix of the protein retains a cooperatively folded structure. Taken together with previous results on the OB-fold proteins SN and CspA, the present results for LysN suggest that the most conserved elements of structure in the OB-fold motif are the most resistant to denaturation. In all three proteins, stability to denaturation correlates with sequence hydrophobicity.  相似文献   

2.
Using hydrogen-deuterium exchange (HX) and electrospray ionization mass spectrometry, we have investigated the stability and structural changes of recombinant human interferon-gamma (IFN-gamma) during aggregation induced by guanidine hydrochloride (GdnHCl) and potassium thiocyanate. First, HX labeling was initiated after the amorphous aggregates were formed to probe the tertiary structure of the aggregated state. Second, labeling was performed at low protein concentrations to assess stability under aggregation prone conditions. In 1 M GdnHCl, the stability of IFN-gamma was greatly reduced and much less protection from HX in solution was observed. Exchange under these conditions was slower in helix C than in the rest of the protein. Aggregates formed in 1 M GdnHCl showed a HX pattern consistent with a partially unfolded state with an intact helix C. Although aggregates formed in 0.3 M KSCN exhibited a HX pattern similar to those formed in GdnHCl, the solution phase HX pattern in 0.3 M KSCN was surprisingly comparable to that of the native state. Varying the aggregation time before performing HX revealed that KSCN first precipitated native protein and then facilitated partial unfolding of the precipitated protein. These results show that helix C, which forms the hydrophobic core of the IFN-gamma dimer, is highly protected from HX under native conditions, is more stable in GdnHCl than the rest of the protein and remains intact in both GdnHCl- and KSCN-induced aggregates. This suggests that native-state HX patterns may presage regions of the protein susceptible to unfolding during aggregation.  相似文献   

3.
We utilized electrospray ionization mass spectrometry (ESI-MS) and hydrogen-deuterium exchange (HX) to detect unfolding of hen egg white lysozyme during salt-induced precipitation. Deuterated lysozyme was dissolved in protonated buffer at pH 2.16 and precipitated with ammonium sulfate, sodium chloride, and potassium thiocyanate. ESI-MS was used to detect mass differences in lysozyme due to the loss of deuterons for solvent protons, providing insight on the conformational history of the protein during the labeling experiment. Precipitation with ammonium sulfate and sodium chloride did not unfold lysozyme, consistent with the known stabilizing effects of kosmotropic salts. Potassium thiocyanate, an aggressive chaotrope, was an effective precipitant at 0.2 M, but also disrupted lysozyme structure and caused the formation of precipitate fractions that did not readily redissolve into aqueous solution without the use of a chemical denaturant. Precipitation with 1.0 M thiocyanate resulted in faster rates of unfolding and larger amounts of the insoluble precipitate. The unfolding kinetics were biphasic, exhibiting a slow phase after a few hours that presumably reflected a smaller propensity for lysozyme to unfold in the precipitated state. Bimodal mass distributions in the ESI-MS spectra for the thiocyanate precipitates indicate two states for lysozyme in this system, a native and a molten globule-like partially unfolded state. ESI-MS analysis of the insoluble precipitates indicated that they consisted primarily of protein molecules that had unfolded. Investigation of the HX behavior of lysozyme in a KSCN solution at low protein concentrations confirmed the destabilizing effect of the salt on the protein structure, even when there was almost no solid phase present. The HX/ESI-MS results provide insight into the mechanism combining precipitation and denaturation for such a system, both in terms of obtaining quantitative kinetic and stability information and the identification of the conformers present.  相似文献   

4.
Residue-level features of bovine pancreatic trypsin inhibitor (BPTI) unfolding on reversed-phase chromatography (RPC) surfaces were investigated using hydrogen-deuterium exchange labeling and NMR. A set of silica-based RPC surfaces was used to examine the influence of alkyl chain length and media pore size on adsorbed BPTI conformation. In all cases there was substantial unfolding in the adsorbed state; however, residual protection from exchange was consistently observed. Particle pore size did not influence conformation substantially for C4-alkyl modified silica; however, 120 A pore C18 media produced more hydrogen exchange than any other surface examined. In this case, the radius of curvature inside the pore approaches the size of the BPTI molecule. Generally, the pattern of hydrogen exchange protection was uniform; however, the beta-sheet region was selectively protected on the large-pore C18 media. The beta-sheet region forms a hydrophobic core that forms early when BPTI folds in solution. This suggests that partially unfolded states possessing a native-like structure play an important role in adsorption and elution in RPC. Finally, increased contact time with the surface before elution fostered unfolding and altered chromatographic behavior considerably.  相似文献   

5.
The hydrogen-deuterium exchange kinetics of 37 backbone amide residues in RNase T1 have been monitored at 25, 40, 45, and 50 degrees C at pD 5.6 and at 40 and 45 degrees C at pD 6.6. The hydrogen exchange rate constants of the hydrogen-bonded residues varied over eight orders of magnitude at 25 degrees C with 13 residues showing exchange rates consistent with exchange occurring as a result of global unfolding. These residues are located in strands 2-4 of the central beta-pleated sheet. The residues located in the alpha-helix and the remaining strands of the beta-sheet exhibited exchange behaviors consistent with exchange occurring due to local structural fluctuations. For several residues at 25 degrees C, the global free energy change calculated from the hydrogen exchange data was over 2 kcal/mol greater than the free energy of unfolding determined from urea denaturation experiments. The number of residues showing this unexpected behavior was found to increase with temperature. This apparent inconsistency can be explained quantitatively if the cis-trans isomerization of the two cis prolines, Pro-39 and Pro-55, is taken into account. The cis-trans isomerization equilibrium calculated from kinetic data indicates the free energy of the unfolded state will be 2.6 kcal/mol higher at 25 degrees C when the two prolines are cis rather than trans (Mayr LM, Odefey CO, Schutkowski M, Schmid FX. 1996. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique. Biochemistry 35: 5550-5561). The hydrogen exchange results are consistent with the most slowly exchanging hydrogens exchanging from a globally higher free energy unfolded state in which Pro-55 and Pro-39 are still predominantly in the cis conformation. When the conformational stabilities determined by hydrogen exchange are corrected for the proline isomerization equilibrium, the results are in excellent agreement with those from an analysis of urea denaturation curves.  相似文献   

6.
The folding/unfolding equilibrium of the alpha-spectrin SH3 domain has been measured by NMR-detected hydrogen/deuterium exchange and by differential scanning calorimetry. Protection factors against exchange have been obtained under native conditions for more than half of the residues in the domain. Most protected residues are located at the beta-strands, the short 3(10) helix, and part of the long RT loop, whereas the loops connecting secondary structure elements show no measurable protection. Apparent stability constants per residue and their corresponding Gibbs energies have been calculated from the exchange experiments. The most stable region of the SH3 domain is defined by the central portions of the beta-strands. The peptide binding region, on the other hand, is composed of a highly stable region (residues 53-57) and a highly unstable region, the loop between residues 34-41 (n-Src loop). All residues in the domain have apparent Gibbs energies lower than the global unfolding Gibbs energy measured by differential scanning calorimetry, indicating that under our experimental conditions the amide exchange of all residues in the SH3 domain occurs primarily via local unfolding reactions. A structure-based thermodynamic analysis has allowed us to predict correctly the thermodynamics of the global unfolding of the domain and to define the ensemble of conformational states that quantitatively accounts for the observed pattern of hydrogen exchange protection. These results demonstrate that under native conditions the SH3 domain needs to be considered as an ensemble of conformations and that the hydrogen exchange data obtained under those conditions cannot be interpreted by a two-state equilibrium. The observation that specific regions of a protein are able to undergo independent local folding/unfolding reactions indicates that under native conditions the scale of cooperative interactions is regional rather than global.  相似文献   

7.
The refolding kinetics of the 140-residue, all beta-sheet, human fibroblast growth factor (hFGF-1) is studied using a variety of biophysical techniques such as stopped-flow fluorescence, stopped-flow circular dichroism, and quenched-flow hydrogen exchange in conjunction with multidimensional NMR spectroscopy. Urea-induced unfolding of hFGF-1 under equilibrium conditions reveals that the protein folds via a two-state (native <--> unfolded) mechanism without the accumulation of stable intermediates. However, measurement of the unfolding and refolding rates in various concentrations of urea shows that the refolding of hFGF-1 proceeds through accumulation of kinetic intermediates. Results of the quenched-flow hydrogen exchange experiments reveal that the hydrogen bonds linking the N- and C-terminal ends are the first to form during the refolding of hFGF-1. The basic beta-trefoil framework is provided by the simultaneous formation of beta-strands I, IV, IX, and X. The other beta-strands comprising the beta-barrel structure of hFGF-1 are formed relatively slowly with time constants ranging from 4 to 13 s.  相似文献   

8.
The refolding kinetics of Cobrotoxin (CBTX), a small all beta-sheet protein is investigated using a variety of biophysical techniques including quenched-flow hydrogen-deuterium (H/D) exchange in conjunction with two-dimensional NMR spectroscopy. Urea-induced equilibrium unfolding of CBTX follows a two-state mechanism with no distinct intermediates. The protein is observed to fold very rapidly within 250 ms. Both the refolding and the unfolding limbs of the chevron plot of CBTX show a prominent curvature suggesting the accumulation of kinetic intermediates. Quenched-flow H/D exchange data suggest the presence of a broad continuum of kinetic intermediates between the unfolded and native states of the protein. Comparison of the native state hydrogen exchange data and the results of the quenched-flow H/D exchange experiments, reveals that the residues constituting the folding core of CBTX are not a subset of the slow exchange core. To our knowledge, this is the first report wherein the refolding of a small all beta-sheet protein is shown to be a multi-step process involving the accumulation of kinetic intermediates.  相似文献   

9.
Pyrococcus furiosus (Pf) rubredoxin is the most thermostable protein characterized to date. Reflecting the complications arising from irreversible denaturation of this protein, predictions of which structural regions confer differential thermal stability have utilized kinetic stability measurements, hydrogen exchange protection factors, long range hydrogen bond NMR spin couplings, and molecular dynamics simulations, and have primarily implicated the three-stranded beta-sheet and the adjacent metal binding site. Herein, NMR chemical exchange experiments demonstrate reversible two-state unfolding at the thermal transition temperature (T(m)) for hybrids of Pf and the mesophile Clostridium pasteurianum (Cp) rubredoxins which interchange residues 14-33, the so-called multi-turn segment. This complementary pair of hybrid rubredoxins exhibits largely additive incremental thermal stabilizations vs. the parental proteins. Both stabilization free energy measurements as well as incremental T(m) values indicate that a minimum of 37% of the total differential thermal stability resides in this multi-turn segment. Such a proportionality between DeltaDeltaG and incremental T(m) values is predicted for hybrid pairs exhibiting thermodynamic additivity in which the differential stability is predominantly enthalpic.  相似文献   

10.
15N relaxation measurements have been performed on the type Iota blue copper protein azurin from Pseudomonas aeruginosa. The relaxation times show that one loop (residues 103-108) and one turn (residues 74-77) display fast internal motions. The rest of the protein is rigid with an average order parameter S(2) of 0.85 +/- 0. 05. The copper binding site shows the same degree of rigidity even though is it composed of several loops and lies outside the beta-sheet sandwich. Substantial exchange broadening was found for a number of residues surrounding the side chain of His-35. The average exchange rate has been determined from NMR exchange spectroscopy experiments and is 45 +/- 6 s(-)(1) at 41 degrees C. The exchange broadening is caused by the protonation/deprotonation equilibrium of His-35. The NMR results indicate that the two structures of azurin observed by X-ray diffraction of crystals at pH 5.5 and 9.0 [Nar, H., Messerschmidt, A., Huber, R., Van de Kamp, M., Canters, G. W. (1991) J. Mol. Biol. 221, 765-772] are present in solution and that they interconvert slowly.  相似文献   

11.
Prediction and understanding of the folding and stability of the 3D structure of proteins is still a challenge. The different atomic interactions, such as non polar contacts and hydrogen bonding, are known but their exact relative weights and roles when contributing to protein folding and stability are not identified. Initiated by a previous molecular dynamics simulation of fully ester-linked hen egg white lysozyme (HEWL), which showed a more compact fold of the ester-linked molecule compared to the native one, three variants of this protein are analyzed in the present study. These are 129-residue native HEWL, partly ester-linked HEWL, in which only 34 peptide linkages that are not involved in the helical or β-strand parts of native HEWL were replaced by ester linkages, and fully (126 residues) ester-linked HEWL. Native and partly ester-linked HEWL showed comparable behaviour, whereas fully ester-linked HEWL could not maintain the native secondary structure of HEWL in the simulation and adopted a more compact fold. The conformational changes were analyzed by comparing simulation averaged values of quantities that can be measured by NMR, such as (1)H-(15)N backbone order parameters, residual dipolar couplings, proton-proton NOE distances and (3)J-couplings with the corresponding values derived from experimental NMR data for native HEWL. The information content of the latter appeared to be insufficient to detect the local conformational rearrangements upon esterification of the loop regions of the protein. For fully ester-linked HEWL, a significantly reduced agreement was observed. Upon esterification, the backbone-side chain and side chain-side chain hydrogen-bonding pattern of HEWL changes to maintain its compactness and thus the structural stability of the ester-linked lysozymes.  相似文献   

12.
Camelids produce functional "heavy chain" antibodies which are devoid of light chains and CH1 domains [Hamers-Casterman, C., et al. (1993) Nature 363, 446-448]. It has been shown that the variable domains of these heavy chain antibodies (the V(HH) fragments) are functional at or after exposure to high temperatures, in contrast to conventional antibodies [Linden van der, R. H. J., et al. (1999) Biochim. Biophys. Acta 1431, 37-44]. For a detailed understanding of the higher thermostability of these V(HH) fragments, knowledge of their structure and conformational dynamics is required. As a first step toward this goal, we report here the essentially complete (1)H and (15)N NMR backbone resonance assignments of a llama V(HH) antibody fragment, and an extensive analysis of the structure at higher temperatures. The H-D exchange NMR data at 300 K indicate that the framework of the llama V(HH) fragment is highly protected with a DeltaG(ex) of >5.4 kcal/mol, while more flexibility is observed for surface residues, particularly in the loops and the two outer strands (residues 4-7, 10-13, and 58-60) of the beta-sheet. The CD data indicate a reversible, two-state unfolding mechanism with a melting transition at 333 K and a DeltaH(m) of 56 kcal/mol. H-D exchange studies using NMR and ESI-MS show that below 313 K exchange occurs through local unfolding events whereas above 333 K exchange mainly occurs through global unfolding. The lack of a stable core at high temperatures, observed for V(HH) fragments, has also been observed for conventional antibody fragments. The main distinction between the llama V(HH) fragment and conventional antibody fragments is the reversibility of the thermal unfolding process, explaining its retained functionality after exposure to high temperatures.  相似文献   

13.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

14.
The NMR solution structures of NTX-1 (PDB code 1W6B and BMRB 6288), a long neurotoxin isolated from the venom of Naja naja oxiana, and the molecular dynamics simulation of these structures are reported. Calculations are based on 1114 NOEs, 19 hydrogen bonds, 19 dihedral angle restraints and secondary chemical shifts derived from 1H to 13C HSQC spectrum. Similar to other long neurotoxins, the three-finger like structure shows a double and a triple stranded beta-sheet as well as some flexible regions, particularly at the tip of loop II and the C-terminal tail. The solution NMR and molecular dynamics simulated structures are in good agreement with root mean square deviation values of 0.23 and 1 A for residues involved in beta-sheet regions, respectively. The overall fold in the NMR structure is similar to that of the X-ray crystallography, although some differences exist in loop I and the tip of loop II. The most functionally important residues are located at the tip of loop II and it appears that the mobility and the local structure in this region modulate the binding of NTX-1 and other long neurotoxins to the nicotinic acetylcholine receptor.  相似文献   

15.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.  相似文献   

16.
The structure and unfolding of metal-free (apo) human wild-type SOD1 and three pathogenic variants of SOD1 (A4V, G93R, and H48Q) that cause familial amyotrophic lateral sclerosis have been studied with amide hydrogen/deuterium exchange and mass spectrometry. The results indicate that a significant proportion of each of these proteins exists in solution in a conformation in which some strands of the β-barrel (i.e. β2) are well protected from exchange at physiological temperature (37 °C), whereas other strands (i.e. β3 and β4) appear to be unprotected from hydrogen/deuterium exchange. Moreover, the thermal unfolding of these proteins does not result in the uniform incorporation of deuterium throughout the polypeptide but involves the local unfolding of different residues at different temperatures. Some regions of the proteins (i.e. the “Greek key” loop, residues 104–116) unfold at a significantly higher temperature than other regions (i.e. β3 and β4, residues 21–53). Together, these results show that human wild-type apo-SOD1 and variants have a partially unfolded β-barrel at physiological temperature and unfold non-cooperatively.  相似文献   

17.
The solution structure and backbone dynamics of the recombinant potato carboxypeptidase inhibitor (PCI) have been characterized by NMR spectroscopy. The structure, determined on the basis of 497 NOE-derived distance constraints, is much better defined than the one reported in a previous NMR study, with an average pairwise backbone root-mean-square deviation of 0.5 A for the well-defined region of the protein, residues 7-37. Many of the side-chains show now well-defined conformations, both in the hydrophobic core and on the surface of the protein. Overall, the solution structure of free PCI is similar to the one that it shows in the crystal of the complex with carboxypeptidase A. However, some local differences are observed in regions 15-21 and 27-29. In solution, the six N-terminal and the two C-terminal residues are rather flexible, as shown by 15N backbone relaxation measurements. The flexibility of the latter segment may have implications in the binding of the inhibitor by the enzyme. All the remaining residues in the protein are essentially rigid (S2 > 0.8) with the exception of two of them at the end of a short 3/10 helix. Despite the small size of the protein, a number of amide protons are protected from exchange with solvent deuterons. The slowest exchanging protons are those in a small two-strand beta-sheet. The unfolding free energies, as calculated from the exchange rates of these protons, are around 5 kcal/mol. Other protected amide protons are located in the segment 7-12, adjacent to the beta-sheet. Although these residues are not in an extended conformation in PCI, the equivalent residues in structurally homologous proteins form a third strand of the central beta-sheet. The amide protons in the 3/10 helix are only marginally protected, indicating that they exchange by a local unfolding mechanism, which is consistent with the increase in flexibility shown by some of its residues. Backbone alignment-based programs for folding recognition, as opposite to disulfide-bond alignments, reveal new proteins of unrelated sequence and function with a similar structure.  相似文献   

18.
The solution structure of porcine pancreatic phospholipase A2 (124 residues, 14 kDa) has been studied by two-dimensional homonuclear 1H and two- and three-dimensional heteronuclear 15N-1H nuclear magnetic resonance spectroscopy. Backbone assignments were made for 117 of the 124 amino acids. Short-range nuclear Overhauser effect (NOE) data show three alpha-helices from residues 1-13, 40-58, and 90-109, an antiparallel beta-sheet for residues 74-85, and a small antiparallel beta-sheet between residues 25-26 and 115-116. A 15N-1H heteronuclear multiple-quantum correlation experiment was used to monitor amide proton exchange over a period of 22 h. In total, 61 amide protons showed slow or intermediate exchange, 46 of which are located in the three large helices. Helix 90-109 was found to be considerably more stable than the other helices. For the beta-sheets, four hydrogen bonds could be identified. The secondary structure of porcine PLA in solution, as deduced from NMR, is basically the same as the structure of porcine PLA in the crystalline state. Differences were found in the following regions, however. Residues 1-6 in the first alpha-helix are less structured in solution than in the crystal structure. Whereas in the crystal structure residues 24-29 are involved both in a beta-sheet with residues 115-117 and in a hairpin turn, the expected hydrogen bonds between residues 24-117 and 25-29 do not show slow exchange behavior. This and the absence of several expected NOEs imply that this region has a less well defined structure in solution. Finally, the hydrogen bond between residues 78-81, which is part of a beta-sheet, does not show slow exchange behavior.  相似文献   

19.
The nature of denatured ensembles of the enzyme human carbonic anhydrase (HCA) has been extensively studied by various methods in the past. The protein constitutes an interesting model for folding studies that does not unfold by a simple two-state transition, instead a molten globule intermediate is highly populated at 1.5 M GuHCl. In this work, NMR and H/D exchange studies have been conducted on one of the isozymes, HCA I. The H/D exchange studies, which were enabled by the previously obtained resonance assignment of HCA I, have been used to identify unfolded forms that are accessible from the native state. In addition, the GuHCl-induced unfolded states of HCA I have also been characterized by NMR at GuHCl concentrations in the 0-5 M range. The most important findings in this work are as follows: (1) Amide protons located in the center of the beta-sheet require global unfolding events for efficient H/D exchange. (2) The molten globule and the native state give similar protection against H/D exchange for all of the observable amide protons (i.e., water seems not to efficiently penetrate the interior of the molten globule). (3) At high protein concentrations, the molten globule can form large aggregates, which are not detectable by solution-state NMR methods. (4) The unfolded state (U), present at GuHCl concentrations above 2 M, is composed of an ensemble of conformations having residual structures with different stabilities.  相似文献   

20.
Escherichia coli CspA is a small all-beta-sheet protein that folds fast (tau = 4 ms) via an apparent two-state mechanism. Our previous studies have shown that a large aromatic cluster on the surface of the protein participates in the rate-limiting step of folding and thus may be part of the folding nucleus of this protein. To obtain a more detailed picture of molecular events at the peptide backbone during unfolding and folding of CspA, we used native state hydrogen exchange and nuclear magnetic resonance spectroscopy (NMR). The experiments with native CspA were performed over a range of pH values from low pH, where exchange is governed by a rapid equilibrium before chemical exchange (EX2 exchange), to high pH, where exchange is dictated by the rate of unfolding (EX1 exchange). Rates of folding and unfolding were determined for 11 residues. The distribution of rates of folding within the structure of CspA suggests that hairpin turns, including one near the aromatic cluster, may nucleate the folding of CspA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号