首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta22-unsaturated sterols, containing a double bond at the C-22 position in the side chain, occur specifically in fungi and plants. Here, we describe the identification and characterization of cytochrome P450s belonging to the CYP710A family as the plant C-22 desaturase. Recombinant proteins of CYP710A1 and CYP710A2 from Arabidopsis thaliana and CYP710A11 from tomato (Lycopersicon esculentum) were expressed using a baculovirus/insect system. The Arabidopsis CYP710A1 and tomato CYP710A11 proteins exhibited C-22 desaturase activity with beta-sitosterol to produce stigmasterol (CYP710A1, K(m) = 1.0 microM and kinetic constant [k(cat)] = 0.53 min(-1); CYP710A11, K(m) = 3.7 microM and k(cat) = 10 min(-1)). In Arabidopsis transgenic lines with CYP710A1 and CYP710A11 overexpression, stigmasterol levels increased by 6- to 32-fold. Arabidopsis CYP710A2 was able to produce brassicasterol and stigmasterol from 24-epi-campesterol and beta-sitosterol, respectively. Sterol profiling analyses for CYP710A2 overexpression and a T-DNA insertion event into CYP710A2 clearly demonstrated in planta that CYP710A2 was responsible for both brassicasterol and stigmasterol production. Semiquantitative PCR analyses and promoter:beta-glucuronidase transgenic approaches indicated strict tissue/organ-specific regulation for each CYP710A gene, implicating differential tissue distributions of the Delta(22)-unsaturated sterols in Arabidopsis. Our results support the possibility that the CYP710 family may encode P450s of sterol C-22 desaturases in different organisms.  相似文献   

2.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   

3.
A variety of sterols and stanols have been analyzed for their ability to satisfy bulk membrane and high-specificity (sparking) functions in three yeast sterol auxotrophs. While many sterols and stanols satisfied bulk membrane requirements, only those possessing a C-5,6 unsaturation or capable of being desaturated at C-5 fulfilled the high-specificity sparking requirement. Unsaturation of the A-ring or beta-saturation of a C-5,6 double bond rendered both sterol and stanol unsuitable for either function. The C-28 methyl group of ergosterol, while not required for growth, allowed for greater ease of desaturation at C-5 in vivo. As a result some sterols and stanols lacking the C-28 methyl were incapable of satisfying the sparking requirement while identical compounds possessing the C-28 methyl were able to fulfill the sparking function(s). These data are extended to hypothesize a role for the C-28 methyl group of ergosterol in yeast.  相似文献   

4.
Plant sterols have been investigated as one of the safe potential alternative methods in lowering plasma cholesterol levels. Several human studies have shown that plant sterols/stanols significantly reduce plasma total and LDL cholesterol. In this article, pharmacological characteristics of plant sterols/stanols have been summarized and discussed. In particular, experimental data that demonstrate the effects of dietary phytosterols on lipid metabolism and development of atherosclerotic lesions have been critically reviewed. Despite their similar chemical structures, phytosterols and cholesterol differ markedly from each other in regard to their pharmacological characteristics including intestinal absorption and metabolic fate. Compared to cholesterol, plant sterols have poor intestinal absorption. The most and best studied effects of plant sterols are their inhibition of intestinal cholesterol absorption. Other biological activities of phytosterols such as effects on lecithin:cholesterol acyltransferase activity, bile acid synthesis, oxidation and uptake of lipoproteins, hepatic and lipoprotein lipase activities and coagulation system have been linked to their anti-atherogenic properties. Moreover, evidence for beneficial effects of plant sterols on disorders such as cutaneous xanthomatosis, colon cancer and prostate hyperplasia has been discussed. Finally, the potential adverse effects of plant sterols as well as pathophysiology of hereditary sitosterolemia are also reviewed. In conclusion, more pharmacokinetic data are needed to better understand metabolic fate of plant sterols/stanols and their fatty acid esters as well as their interactions with other nutraceutical/pharmaceutical agents.  相似文献   

5.
Plant sterols differ from cholesterol in having an alkyl group at Δ-24, and, in the case of stigmasterol, also a Δ-22 double bond. The effects of 10 mol% of three plant sterols (campesterol, β -sitosterol, stigmasterol) and cholesterol on the molecular dynamics and phase behavior in multilamellar liposomes made from different phosphatidylcholine (PC) molecular species have been compared, utilizing the fluorescent probe Laurdan (2-dimethyl-amino-6-laurylnaphthalene). Laurdan reports the molecular mobility in the hydrophilic/hydrophobic interface of the membrane by determining the rate of dipolar relaxation of water molecules close to the glycerol backbone of PC. Our results showed that the Δ-24 alkyl group of plant sterols did not affect their ability to reduce molecular mobility in this region of the PC membranes. However, the plant sterols had a decreased capacity compared to cholesterol to inhibit formation of co-existing domains of gel and liquid-crystalline phases in membranes composed of equimolar dilauroyl-PC and dipalmitoyl-PC. The Δ-22 double bond present in stigmasterol decreased the ability of this sterol, compared to the other phytosterols, to reduce the molecular mobility at the hydrophobic/hydrophilic interface in membranes made of a saturated PC molecular species. However, in membranes made from 16:0/18:2-PC, a lipid species common in plant plasma membranes, stigmasterol was as efficient as other sterols in affecting the polarity and molecular mobility at the hydrophilic/hydrophobic interface of the membrane at 25°C, but was, in contrast to the other sterols, without effect at 0°C. Our results thus confirm as well as contradict the results of previous studies of the interactions between saturated PC and sterols, where other membrane regions were probed. The physiological relevance of the findings is discussed.  相似文献   

6.
Consumption of plant sterols or stanols (collectively referred to as phytosterols) and their esters results in decreased low-density lipoprotein cholesterol, which is associated with decreased atherosclerotic risk. The mechanisms by which phytosterols impart their effects, however, are incompletely characterized. The objective of the present study is to determine if pancreatic cholesterol esterase (PCE; EC 3.1.1.13), the enzyme primarily responsible for cholesterol ester hydrolysis in the digestive tract, is capable of hydrolyzing various phytosterol esters and to compare the rates of sterol ester hydrolysis in vitro. We found that PCE hydrolyzes palmitate, oleate and stearate esters of cholesterol, stigmasterol, stigmastanol and sitosterol. Furthermore, we found that the rate of hydrolysis was dependent on both the sterol and the fatty acid moieties in the following order of rates of hydrolysis: cholesterol>(sitosterol=stigmastanol)>stigmasterol; oleate>(palmitate=stearate). The addition of free phytosterols to the system did not change hydrolytic activity of PCE, while addition of palmitate, oleate or stearate increased activity. Thus, PCE may play an important but discriminatory role in vivo in the liberation of free phytosterols to compete with cholesterol for micellar solubilization and absorption.  相似文献   

7.
This review is devoted to contemporary status of investigation of C-29 and C-28 plant sterols (phytosterols) in relation to their biological activity in mammals and mammalian cells. On the basis of experimental studies published during the last decade the following questions are discussed: phytosterols and nutrition; phytosterols and body cholesterol level; phytosterols and intestinal absorption of lipids, the role of phytosterols in lipid metabolism regulation; phytosterols and cultured mammalian cells; products of phytosterols oxidation; phytoecdysteroids and induced gene expression.  相似文献   

8.
The ability of the marine heterotrophic protists Oxyrrhis marina and Gyrodinium dominans to synthesize sterols de novo and modify dietary sterols was investigated using 13C-labeled substrates. De novo sterol synthesis of O. marina was determined by incorporation of 13C acetate into the culture medium. For G. dominans which has low tolerance of acetate, a protozoan prey Perkinsus marinus that cannot synthesize sterols, was cultured with 13C acetate then fed to G. dominans. Both heterotrophs utilized dietary 13C to synthesize fatty acids de novo, but not sterols. The ability of O. marina and G. dominans to alkylate, saturate, and desaturate dietary sterols was tested using P. marinus incorporated with 13C-labeled cholesterol as prey. O. marina did not modify the dietary 13C-cholesterol, but G. dominans produced 5 labeled sterols (brassicasterol, C28:1, and unknown C28, C29 and C30 sterols) indicating that G. dominans has the ability to desaturate and alkylate dietary cholesterol. The ability of O. marina and G. dominans to dealkylate dietary sterols was tested by feeding them gelatin acacia microspheres (GAMs) containing 13C-labeled brassicasterol. Neither heterotroph dealkylated brassicasterol to make cholesterol, but G. dominans alkylated and saturated brassicasterol to make 2 sterols (C29:1 and C30:0). The lack of dealkylation of brassicasterol by both protist species suggests problems with the substrate and/or delivery system since previous studies suggest that dealkylation of brassicasterol occurs when either species is fed algae containing this sterol.  相似文献   

9.
Sterols are essential nutrients for insects because, in contrast to mammals, no insect (or arthropod for that matter) can synthesize sterols de novo. Plant-feeding insects typically generate their sterols, commonly cholesterol, by metabolizing phytosterols. However, not all phytosterols are readily converted to cholesterol. In this study we examined, using artificial diets containing single sterols/steroids, how typical (cholesterol and stigmasterol) and atypical (cholestanol and cholestanone) sterols/steroids affect the performance of a generalist caterpillar (Helicoverpa zea). We also performed sterols/steroids analyses, using GC/MS techniques, to explore the metabolic fate of these different dietary sterols/steroids. Finally, we used a microarray approach to measure, and compare, midgut gene expression patterns that arise as a function of dietary sterols/steroids. In general, H. zea performed best on the cholesterol and stigmasterol diets, with cholesterol as the dominant tissue sterol on these two treatments. Compared to the cholesterol and stigmasterol diets, performance was reduced on the cholestanol and cholestanone diets; on these latter treatments stanols were the dominant tissue sterol. Finally, midgut gene expression patterns differed as a function of dietary sterol/steroid; using the cholesterol treatment as a reference, gene expression differences were smallest on stigmasterol, intermediate on cholestanol, and greatest on cholestanone. Inspection of our data revealed two broad insights. First, they identify a number of genes potentially involved in sterol/steroid metabolism and absorption. Second, they provide unique mechanistic insights into how variation in dietary sterol/steroid structure can affect insect herbivores.  相似文献   

10.
We have investigated the effect of cholesterol and two abundant phytosterols (sitosterol and stigmasterol) on the voltage-dependent anion-selective channel (VDAC) purified from mitochondria of bean seeds (Phaseolus coccineus). These sterols differ by the degree of freedom of their lateral chain. We show that VDAC displays sensitivity to the lipid-sterol ratio and to the type of sterol found in the membrane. The main findings of this study are: 1), cholesterol and phytosterols modulate the selectivity but only stigmasterol alters the voltage-dependence of the plant VDAC in the range of sterol fraction found in the plant mitochondrial membrane; 2), VDAC unitary conductance is not affected by the addition of sterols; 3), the effect of sterols on the VDAC is reversible upon sterol depletion with 10 μM methyl-β-cyclodextrins; and 4), phytosterols are essential for the channel gating at salt concentration prevailing in vivo. A quantitative analysis of the voltage-dependence indicates that stigmasterol inhibits the transition of the VDAC in the lowest subconductance states.  相似文献   

11.
The following sterols were found in the roots, stems, leaves, unripe and ripe fruits of Solanum dulcamara: cholesterol, sitosterol, stigmasterol, campesterol, brassicasterol, isofucosterol and 24-methylenecholesterol. The most abundant components are cholesterol, sitosterol and stigmasterol (77–84%). In all parts of the plant the sterols are present in the free form and as esters, glycosides and acylated glycosides. The total sterol content and the content of combined forms were determined photometrically. In the leaves 58% of the sterols were found in the form of glycoside (26%), acylated glycoside (29%) and ester (2%). In the roots only 25% of the sterol were found in combined form. In the other organs the ratio of free and combined sterols was intermediate. In all cases, the ester fraction was the least.  相似文献   

12.
Sugars are recognized as signaling molecules regulating the biosynthesis of secondary metabolites in plants. Here, a modulatory effect of sugars on dolichol and phytosterol profiles was noted in the hairy roots of Arabidopsis thaliana. Arabidopsis roots contain a complex dolichol mixture comprising three groups (‘families’) of dolichols differing in the chain-length. These dolichols, especially the longest ones are accompanied by considerable amounts of polyprenols of the same length. The spectrum of polyisoprenoid alcohols, i.e. dolichols and polyprenols, was dependent on sugar type (glucose or sucrose) and its concentration in the medium. Among the long-chain dolichols Dol/Pren-20 (dolichol or prenol molecule composed of 20 isoprene residues) and Dol/Pren-23 were the main components at 0.5% and 2% glucose, respectively. Moreover, the ratio of polyprenols versus respective dolichols was also modulated by sugar in this group of polyisoprenoids, with polyprenols dominating at 3% sucrose and dolichols at 2% glucose. Glucose concentration affected the expression level of genes encoding cis-prenyltransferases, enzymes responsible for elongation of the polyisoprenoid chain. The most abundant phytosterols of the A. thaliana roots, β-sitosterol, stigmasterol and campesterol, were accompanied by corresponding stanols and traces of brassicasterol, stigmast-4,22-dien-3-one and stigmast-4-en-3-one. Similar to the polyisoprenoids, sterol profile responded to the sugar present in the medium, β-sitosterol dominating in roots grown on 3% or lower glucose concentrations and stigmasterol in 3% sucrose. These results indicate an involvement of sugar signaling in the regulation of cis-prenyltransferases and phytosterol pathway enzymes.  相似文献   

13.
During cold acclimation fruit flies switch their feeding from yeast to plant food, however there are no robust molecular markers to monitor this in the wild. Drosophila melanogaster is a sterol auxotroph and relies on dietary sterols to produce lipid membranes, lipoproteins and molting hormones. We employed shotgun lipidomics to quantify eight major food sterols in total lipid extracts of heads and genital tracts of adult male and female flies. We found that their sterol composition is dynamic and reflective of fly diet in an organ-specific manner. Season-dependent changes observed in the organs of wild-living flies suggested that the molar ratio between yeast (ergosterol, zymosterol) and plant (sitosterol, stigmasterol) sterols is a quantifiable, generic and unequivocal marker of their feeding behavior suitable for ecological and environmental population-based studies. The enrichment of phytosterols over yeast sterols in wild-living flies at low temperatures is consistent with switching from yeast to plant diet and corroborates the concomitantly increased unsaturation of their membrane lipids.  相似文献   

14.
Sterols are one of the major components of cellular membranes. Although in mammalian membranes cholesterol is a predominant sterol, in the human organism plant sterols (phytosterols) can also be found. Phytosterols, especially if present in concentrations higher than normal (phytosterolemia), may strongly affect membrane properties. In this work, we studied phytosterol-phospholipid interactions in mixed Langmuir monolayers serving as model membranes. Investigated were two phytosterols, beta-sitosterol and stigmasterol and a variety of phospholipids, both phosphatidylethanolamines and phosphatidylcholines. The phospholipids had different polar heads, different length and saturation of their hydrocarbon chains. The interactions between molecules in mixed sterol/phospholipid films were characterized with the mean area per molecule (A(12)) and the excess free energy of mixing (DeltaG(Exc)). The effect of the sterols on the molecular organization of the phospholipid monolayers was analyzed based on the compression modulus values. It was found that the incorporation of the phytosterols into the phospholipid monolayers increased their condensation. The plant sterols revealed higher affinity towards phosphatidylcholines as compared to phosphatidylethanolamines. The phytosterols interacted more strongly with phospholipids possessing longer and saturated chains. Moreover, both the length and the saturation of the phosphatidylcholines influenced the stoichiometry of the most stable complexes. Our results, compared with those presented previously for cholesterol/phospholipid monolayers, allowed us to draw a conclusion that the structure of sterol (cholesterol, beta-sitosterol, stigmasterol) does not affect the stoichiometry of the most stable complexes formed with particular phospholipids, but influences their stability. Namely, the strongest interactions were found for cholesterol/phospholipids mixtures, while the weakest for mixed systems containing stigmasterol.  相似文献   

15.
Six forms of sphaeropsidins (SA-SF), three- and tetra-cyclic unrearranged pimarane diterpenes produced by Sphaeropsis sapinea f. sp. cupressi, as well as eight derivatives obtained by chemical modification of SA-SC, were assayed for their bioactivity. The effect of each compound on plants which are host or non-host of the pathogen was investigated. Activity on some plant pathogenic fungi was also tested. Some structure-activity relationships have been identified for both phytotoxic and antifungal activity. It appears that the integrity of the tricyclic pimarane system, the preservation of the double bond C(8)-C(14), the tertiary hydroxyl group at C-9, the vinyl group at C-13, and the carboxylic group at C-10 as well as the integrity of the A-ring provide these molecules with non selective phytotoxic and antimycotic activity.  相似文献   

16.
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.  相似文献   

17.
alpha-Linolenic acid (ALA, 9(Z),12(Z),15(Z)-octadecatrienoic acid) derivatives are important plant lipids which play a critical key role in cold tolerance. The final steps of ALA biosynthesis feature a series of regio- and stereoselective dehydrogenation reactions which are catalyzed by a set of enzymes known as fatty acid desaturases. In conjunction with ongoing research into the structural biology of these remarkable catalysts, we have examined the mechanism of double bond introduction at C15,16 as it occurs in a model photosynthetic organism, Chlorella vulgaris. The individual deuterium kinetic isotope effects associated with the C-H bond cleavages at C-15 and C-16 of a thialinoleoyl analogue were measured via competition experiments using appropriately deuterium-labelled 7-thia substrates. A large kinetic isotope effect (KIE) (k(H)/k(D)=10.2+/-2.8) was observed for the C-H bond-breaking step at C-15 while the C-H bond cleavage at C-16 was found to be relatively insensitive to deuterium substitution (k(H)/k(D)=0.8+/-0.2). These results point to C-15 as the site of initial oxidation in omega-3 desaturation and imply that the Chlorella and corresponding plant systems share a common active site architecture.  相似文献   

18.
Although plant sterols are known to suppress intestinal cholesterol absorption, whether plasma and hepatic lipid levels are influenced through non-gut related internal mechanisms has not been established. To examine this question 50 male hamsters were divided into 5 groups and fed semi-purified diets containing 20% energy as fat and 0.25% (w/w) cholesterol ad libitum for 60 days. The control group (i) received diet alone, while four additional groups consumed the diet plus one of four equivalent phytosterol mixtures (5 mg/kg/day) given either as (ii) tall oil phytosterols/stanols mixed with diet (oralSA), (iii) tall oil phytosterols/stanols subcutaneously injected (subSA), (iv) soybean oil phytosterols alone mixed with diet (oralSE), or (v) soybean oil subcutaneous injected phytosterols alone (subSE). The control group and both orally supplemented groups also received placebo subcutaneous sham injections. Neither food consumption, body weight, nor liver weight differed across treatment groups. Subcutaneous administration of SA and SE decreased plasma total cholesterol levels by 21% and 23% (p < 0.0001) and non-apolipoprotein-A cholesterol concentrations by 22% and 15% (p < 0.0002), respectively, compared to control. HDL cholesterol and TG concentrations remained unchanged across all groups, except for a decline of 25% (p < 0.0001) in HDL concentration in the subSE group versus control. Plasma campesterol levels were lower (p < 0.05) in the subSA group relative to all other groups. Plasma campesterol:cholesterol and campesterol:sitosterol ratios were, however, higher (p < 0.0001) for both the oral and subSE groups. Hepatic cholesterol levels were higher (p < 0.0001) in the oral and subSE phytosterol groups by 30% and 31%, respectively, relative to control. We conclude that low doses of subcutaneously administered plant sterols reduce circulating cholesterol levels through mechanisms other than inhibiting intestinal cholesterol absorption.  相似文献   

19.
Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways.  相似文献   

20.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号