首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper discusses the benefit of mapping paired cysteine mutation patterns as a guide to identifying the positions of protein disulfide bonds. This information can facilitate the computer modeling of protein tertiary structure. First, a simple, paired natural-cysteine-mutation map is presented that identifies the positions of putative disulfide bonds in protein families. The method is based on the observation that if, during the process of evolution, a disulfide-bonded cysteine residue is not conserved, then it is likely that its counterpart will also be mutated. For each target protein, protein databases were searched for the primary amino acid sequences of all known members of distinct protein families. Primary sequence alignment was carried out using PileUp algorithms in the GCG package. To search for correlated mutations, we listed only the positions where cysteine residues were highly conserved and emphasized the mutated residues. In proteins of known three-dimensional structure, a striking pattern of paired cysteine mutations correlated with the positions of known disulfide bridges. For proteins of unknown architecture, the mutation maps showed several positions where disulfide bridging might occur.  相似文献   

2.
Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa 118) is bonded to cysteine 4 (aa 127). Thus, the biochemical analysis of gD-2 agrees with the genetic analysis of gD-1. A similar disulfide bond arrangement is postulated to exist in other gD homologs.  相似文献   

3.
Penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae is one of the high-molecular-weight PBPs involved in the development of intrinsic beta-lactam resistance. Point mutations in the PBP 2x genes (pbpX) have now been characterized in five independent spontaneous laboratory mutants in order to identify protein regions which are important for interaction with beta-lactam antibiotics. All mutant genes contained two to four mutations resulting in amino acid substitutions within the penicillin-binding domain of PBP 2x, and none of the mutants carried an identical set of mutations. For one particular mutant, C606, carrying four mutations in pbpX, the mutations at positions 601 and 597 conferred first- and second-level resistance when introduced into the susceptible parent strain S. pneumoniae R6. However, the other two mutations, at amino acid positions 289 and 422, which were originally selected at the fifth and sixth isolation steps, did not contribute at all to resistance in similar experiments. This suggests that they are phenotypically expressed only in combination with mutations in other genes. Three PBP 2x regions were mutated in from two to all four mutants carrying a low-affinity PBP 2x. However, in a fifth mutant containing a PBP 2x with apparent zero affinity for beta-lactams, the three mutations in pbpX mapped at entirely different positions. This demonstrates that different mutational pathways exist for remodeling this PBP during resistance development.  相似文献   

4.
5.
Single conservative and nonconservative amino acid substitutions were introduced into the gp45 external envelope protein (SU) of human T-cell leukemia virus type I (HTLV-I). The mutated amino acids were those identified as being conserved in HTLV-I, HTLV-II, and simian T-cell leukemia virus type I (but not in bovine leukemia virus). The mutated envelopes were tested for intracellular maturation and for function. Mutants with three major phenotypes could be defined: (i) 9 mutants with a wild-type phenotype, which included most of the conservative amino acid changes (five of seven) distributed throughout the SU protein; (ii) 8 mutants with affected intracellular maturation, 6 of which define a region in the central part of the SU protein essential for correct folding of the protein; and (iii) 13 mutants with normal intracellular maturation but impaired syncytium formation. These mutations likely affect the receptor binding step or postbinding events required for fusion. Five of these mutations are located between amino acids 75 and 101 of the SU protein, in the amino-terminal third of the molecule. The other mutations involve positions 170, 181, 195, 197, 208, 233, and 286, suggesting that two other domains, one central and one carboxy terminal, are involved in HTLV-I envelope functions.  相似文献   

6.
The mitochondrial DNA (mtDNA) is highly variable, containing large numbers of pathogenic mutations and neutral polymorphisms. The spectrum of homoplasmic mtDNA variation was characterized in 730 subjects and compared with known pathogenic sites. The frequency and distribution of variants in protein coding genes were inversely correlated with conservation at the amino acid level. Analysis of tRNA secondary structures indicated a preference of variants for the loops and some acceptor stem positions. This comprehensive overview of mtDNA variants distinguishes between regions and positions which are likely not critical, mainly conserved regions with pathogenic mutations and essential regions containing no mutations at all.  相似文献   

7.
L Zhang  F J Castellino 《Biochemistry》1990,29(48):10828-10834
Site-specific mutagenesis has been employed to alter the cDNA of human protein C (PC), such that the gamma-carboxyglutamic acid (gamma) pair at positions 6 and 7 of the recombinant (r) protein would be changed to aspartic acid residues. This variant, [gamma 6D, gamma 7D]r-PC, and its wild-type (wt) counterpart have been expressed in human kidney 293 cells. After purification, forms of wtr-PC that were fully gamma-carboxylated and beta-hydroxylated and of [gamma 6D, gamma 7D]r-PC that lacked only the two altered gamma-residues at amino acid sequence positions 6 and 7 were obtained. Subsequent to its conversion to activated PC (APC), [gamma 6D, gamma 7D]r-APC displayed a greatly reduced activity in the activated partial thromboplastin time of PC-deficient plasma, as compared to wtr-APC and human plasma APC. In addition, the activity of [gamma 6D, gamma 7D]r-APC toward inactivation of purified human factor VIII was reduced to less than 5% of that of wtr-APC and human plasma APC. These results, with the first reported mutations at gamma-residues of PC produced by recombinant DNA technology, indicate that the paired gamma-residues at positions 6 and 7, which are highly conserved in all vitamin K dependent coagulation proteins, are very important to generation of fully functional APC. Additional results demonstrate further that lack of gamma-carboxylation at positions 6 and 7 of PC does not substantially affect this same processing reaction at other relevant glutamic acid residues.  相似文献   

8.
Influenza A virus matrix protein (M1) plays an important role in virus assembly and budding. Besides a well-characterized basic amino acid-rich nuclear localization signal region at positions 101 to 105, M1 contains another basic amino acid stretch at positions 76-78 that is highly conserved among influenza A and B viruses, suggesting the importance of this stretch. To understand the role of these residues in virus replication, we mutated them to either lysine (K), alanine (A), or aspartic acid (D). We could generate viruses possessing either single or combination substitutions with K or single substitution with A at any of these positions, but not those with double substitutions with A or a single substitution with D. Viruses with the single substitution with A exhibited slower growth and had lower nucleoprotein/M1 quantitative ratio in virions compared to the wild-type virus. In cells infected with a virus possessing the single substitution with A at position 77 or 78 (R77A or R78A, respectively), the mutated M1 localized in patches at the cell periphery where nucleoprotein and hemagglutinin colocalized more often than the wild-type did. Transmission electron microscopy showed that virus possessing M1 R77A or R78A, but not the wild-type virus, was present in vesicular structures, indicating a defect in virus assembly and/or budding. The M1 mutations that did not support virus generation exhibited an aberrant M1 intracellular localization and affected protein incorporation into virus-like particles. These results indicate that the basic amino acid stretch of M1 plays a critical role in influenza virus replication.  相似文献   

9.
The cDNA sequence coding for the coat protein of cucumber mosaic virus (Japanese Y strain) was cloned, and its nucleotide sequence was determined. The sequence contains an open reading frame that encodes the coat protein composed of 218 amino acids. The nucleotide and deduced amino acid sequences of the coat protein of this strain were compared with those of the Q strain; the homologies of the sequences were 78% and 81%, respectively. Further study of the sequences gave an insight into the genome organization and the molecular features of the coat protein. The coding region can be divided into three characteristic regions. The N-terminal region has conserved features in the positively charged structure, the hydropathy pattern and the predicted secondary structure, although the amino acid sequence is varied mainly due to frameshift mutations. It is noteworthy that the positions of arginine residues in this region are highly conserved. Both the nucleotide and amino acid sequences of the central region are well conserved. The amino acid sequence of the C-terminal region is not conserved, because of frameshift mutations, however, the total number of amino acids is conserved. The nucleotide sequence of the 3'-noncoding region is divergent, but it could form a tRNA-like structure similar to those reported for other viruses. Detailed investigation suggests that the Y and Q strains are evolutionarily distant.  相似文献   

10.
Gloor GB  Martin LC  Wahl LM  Dunn SD 《Biochemistry》2005,44(19):7156-7165
Information theory was used to identify nonconserved coevolving positions in multiple sequence alignments from a variety of protein families. Coevolving positions in these alignments fall into two general categories. One set is composed of positions that coevolve with only one or two other positions. These positions often display direct amino acid side-chain interactions with their coevolving partner. The other set comprises positions that coevolve with many others and are frequently located in regions critical for protein function, such as active sites and surfaces involved in intermolecular interactions and recognition. We find that coevolving positions are more likely to change protein function when mutated than are positions showing little coevolution. These results imply that information theory may be applied generally to find coevolving, nonconserved positions that are part of functional sites in uncharacterized protein families. We propose that these coevolving positions compose an important subset of the positions in an alignment, and may be as important to the structure and function of the protein family as are highly conserved positions.  相似文献   

11.
A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281-D290, A372-C382, E578-A589 and V585-A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaC(Pa)) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaC(Re)) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaC(Pa)-1-265-PhaC(Re)-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.  相似文献   

12.
Single-amino-acid changes in a highly conserved central region of the human immunodeficiency virus type 1 (HIV-1) integrase protein were analyzed for their effects on viral protein synthesis, virion morphogenesis, and viral replication. Alteration of two amino acids that are invariant among retroviral integrases, D116 and E152 of HIV-1, as well as a mutation of the highly conserved amino acid S147 blocked viral replication in two CD4+ human T-cell lines. Mutations of four other highly conserved amino acids in the region had no detectable effect on viral replication, whereas mutations at two positions, N117 and Y143, resulted in viruses with a delayed-replication phenotype. Defects in virion precursor polypeptide processing, virion morphology, or viral DNA synthesis were observed for all of the replication-defective mutants, indicating that changes in integrase can have pleiotropic effects on viral replication.  相似文献   

13.
The cyanobacterium Synechocystis 6803 was engineered to produce a D1 protein where one or more of the N-terminal threonines at positions 2, 3 and 4 were replaced by other amino acid residues. No phenotypic effects were found for the T2S or T2L mutations, whereas the T2V, T2L;T4V and T2V;T3V;T4V mutations resulted in reduced photoautotrophic growth rate and oxygen evolving activity. The mutant strain T2V;T3V;T4V exhibited an oxygen evolution activity that was only half of that for the wild-type strain. Despite of that, both accumulation and stability of the D1 protein in the thylakoid membrane appeared unaffected in the mutant.  相似文献   

14.
1. Amyloid isolated from the liver of a domestic short-haired (DSH) cat was dissolved and purified by gel filtration for amino acid sequence analysis. 2. Sequences of two major peptides corresponding to positions 18-23 and 25-75 of human amyloid protein AA were obtained when cyanogen bromide-cleaved protein was applied to an amino acid sequenator. 3. Comparison of these regions of amyloid protein from the Abyssinian cat (high incidence of AA amyloidosis) and DSH cat (low incidence of AA amyloidosis) revealed three amino acid differences, two of which occurred within regions that are completely conserved in the Abyssinian cat and all other species. 4. Secondary prediction plots showed less potential for amyloidogenicity (i.e., less beta-sheet conformation) in protein AA of the DSH cat as compared to the Abyssinian cat and other animal species. 5. These differences in protein AA of the DSH cat may, therefore, be linked to the comparatively uncommon occurrence of AA amyloidosis in the DSH cat as compared to the Abyssinian cat and other animals species.  相似文献   

15.
The D1 protein of the photosystem II reaction center is thought to be the most light-sensitive component of the photosynthetic machinery. To understand the mechanisms underlying the light sensitivity of D1, we performed in vitro random mutagenesis of the psbA gene that codes for D1, transformed the unicellular cyanobacterium Synechocystis sp. PCC 6803 with mutated psbA, and selected phototolerant transformants that did not bleach in high intensity light. A region of psbA2 coding for 178 amino acids of the carboxyl-terminal portion of the peptide was subjected to random mutagenesis by low fidelity polymerase chain reaction amplification or by hydroxylamine treatment. This region contains the binding sites for Q(B), D2 (through Fe), and P680. Eighteen phototolerant mutants with single and multiple amino acid substitutions were selected from a half million transformants exposed to white light at 320 micromol m(-2) s(-1). A strain transformed with non-mutagenized psbA2 became bleached under the same conditions. Site-directed mutagenesis has confirmed that one or more substitutions of amino acids at residues 234, 254, 260, 267, 322, 326, and 328 confers phototolerance. The rate of degradation of D1 protein was not appreciably affected by the mutations. Reduced bleaching of mutant cyanobacterial cells may result from continued buildup of photosynthetic pigment systems caused by changes in redox signals originating from D1.  相似文献   

16.
间隙连接蛋白β2(GJB2)基因突变与遗传性非综合征性耳聋密切相关,其广泛的突变类型及特异性的热点突变被认为是一种独特的致聋基因。本研究应用生物信息学方法对17个物种的GJB2蛋白进行了系统发育、保守性、跨膜区结构、三维结构和错义突变的分析,并结合已有报道的实验结果进行关联性分析。分析预测获得了166个固定的氨基酸位点、2个非保守区以及2个空间结构保守位点;关联性分析证实发生在保守位点的突变致病性高,非保守区突变的概率致病性小,跨膜区且改变氨基酸性质的突变,可能影响蛋白的空间结构而改变膜通道的通透性。本文为进一步研究GJB2基因突变与聋病的关联性及分子发病机制提供了理论依据,同时,这种研究思路对其它疾病的相关研究具有一定的借鉴价值。  相似文献   

17.
Arthrobacter sp. strains D2 and D3 and Labrys sp. strain D1 capable of degrading 20 mM monochloroacetic acid (MCA) were isolated from soil contaminated with herbicides and pesticides. All three isolates were able to grow on MCA as the sole source of carbon and energy with concomitant chloride ion release in the growth medium (19 mM). Strains D2 and D3 (cells doubling time 7 ± 0.3 h) grew four times faster than D1 (26 ± 0.1 h). Strain D2 was then further investigated and could also grow in 10 mM of monobromoacetic acid (MBA), 2,2-dichloropropionic acid (2,2DCP), d,l-2-chloropropionic acid (D,L2CP), l-2-chloropropionic acid (L-2CP), d-2-chloropropionic acid (D-2CP), and glycolate as the sole sources of carbon and energy. Dehalogenase gene amplification using group I primers revealed a 410-bp polymerase chain reaction (PCR) product, but there was none using group II primers. The partial amino acid sequence analysis of group I DehD2 dehalogenase showed at least 32% identity to the corresponding regions of DehE, DhlIV, DehI, and D,L-DEX, with key amino acid residues Ser188, Ala187, and Asp189. These amino acid residues were involved in substrate binding and catalysis and were conserved in the partial amino acid sequence.  相似文献   

18.
Differences in the amino acid sequence between the bispecific NAD(P)H-nitrate reductase of birch (Betula pendula Roth) and the monospecific NADH-nitrate reductases of a variety of other higher plants have been found at the dinucleotide-binding site in the FAD domain. To pinpoint amino acid residues that determine the choice of reducing substrate, we introduced mutations into the cDNA coding for birch nitrate reductase. These mutations were aimed at replacing certain amino acids of the NAD(P)H-binding site by conserved amino acids located at identical positions in NADH-monospecific enzymes. The mutated cDNAs were integrated into the genome of tobacco by Agrobacterium-mediated transformation. Transgenic tobacco (Nicotiana tabacum) plants were grown on a medium containing ammonium as the sole nitrogen source to keep endogenous tobacco nitrate reductase activity low. Whereas some of the mutated enzymes showed a slight preference for NADPH, as does the nonmutated birch enzyme, the activity of some others greatly depended on the availability of NADH and was low with NADPH alone. Comparison of the mutations reveals that replacement of a single amino acid in the birch sequence (alanine871 by proline) is critical for the use of reducing substrate.  相似文献   

19.
To elucidate the evolutionary mechanisms of the human immunodeficiency virus type 1 gp120 envelope glycoprotein at the single-site level, the degree of amino acid variation and the numbers of synonymous and nonsynonymous substitutions were examined in 186 nucleotide sequences for gp120 (subtype B). Analyses of amino acid variabilities showed that the level of variability was very different from site to site in both conserved (C1 to C5) and variable (V1 to V5) regions previously assigned. To examine the relative importance of positive and negative selection for each amino acid position, the numbers of synonymous and nonsynonymous substitutions that occurred at each codon position were estimated by taking phylogenetic relationships into account. Among the 414 codon positions examined, we identified 33 positions where nonsynonymous substitutions were significantly predominant. These positions where positive selection may be operating, which we call putative positive selection (PS) sites, were found not only in the variable loops but also in the conserved regions (C1 to C4). In particular, we found seven PS sites at the surface positions of the alpha-helix (positions 335 to 347 in the C3 region) in the opposite face for CD4 binding. Furthermore, two PS sites in the C2 region and four PS sites in the C4 region were detected in the same face of the protein. The PS sites found in the C2, C3, and C4 regions were separated in the amino acid sequence but close together in the three-dimensional structure. This observation suggests the existence of discontinuous epitopes in the protein's surface including this alpha-helix, although the antigenicity of this area has not been reported yet.  相似文献   

20.
To develop an efficient protein expression system, we designed a late embryogenesis abundant (LEA) peptide by mutating the LEA peptide constructed in our previous study (LEA‐I). The peptide is based on the repeating units of an 11mer motif characteristic of LEA proteins from Polypedilum vanderplanki larvae. In the amino acid sequence of the 13mer LEA peptide, glycine at the 6th and 12th positions was replaced with other amino acids via point mutations. Glutamic acid, lysine, leucine, and asparagine in the LEA peptide at the 6th and 12th positions increased green fluorescence protein (GFP) expression. The GFP expression of the mutated LEA peptide was 1.5 to 2.0 times higher than that without LEA peptide. In contrast, the serine‐containing mutated LEA peptide has low GFP expression levels. We hypothesize that the position of amino acids and the nature of amino acid in LEA peptide are important for our coexpression system. These data suggest that the size, structure, and charge of amino acids in the LEA peptide improve the protection and expression of the target protein. The amino acid balance also plays an important role in the expression of the target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号