首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ubiquitin–proteasome pathway is an important regulatory system for the lifetime of inducible nitric-oxide synthase (iNOS), a high-output isoform compared to neuronal NOS (nNOS) and endothelial NOS (eNOS), to prevent overproduction of NO that could trigger detrimental effects such as cytotoxicity. Two E3 ubiquitin ligases, Elongin B/C−Cullin-5−SPRY domain- and SOCS box-containing protein [ECS(SPSB)] and the C-terminus of Hsp70–interacting protein (CHIP), recently have been reported to target iNOS for proteasomal degradation. However, the significance of each E3 ubiquitin ligase for the proteasomal degradation of iNOS remains to be determined. Here, we show that ECS(SPSB) specifically interacted with iNOS, but not nNOS and eNOS, and induced the subcellular redistribution of iNOS from dense regions to diffused expression as well as the ubiquitination and proteasomal degradation of iNOS, whereas CHIP neither interacted with iNOS nor had any effects on the subcellular localization, ubiquitination, and proteasomal degradation of iNOS. These results differ from previous reports. Furthermore, the lifetime of the iNOS(N27A) mutant, a form of iNOS that does not bind to ECS(SPSB), was substantially extended in macrophages. These results demonstrate that ECS(SPSB), but not CHIP, is the master regulator of the iNOS lifetime.  相似文献   

3.
4.
The mammalian SPRY domain- and SOCS box-containing proteins, SPSB1 to SPSB4, belong to the SOCS box family of E3 ubiquitin ligases. Substrate recognition sites for the SPRY domain are identified only for human Par-4 (ELNNNL) and for the Drosophila orthologue GUSTAVUS binding to the DEAD-box RNA helicase VASA (DINNNN). To further investigate this consensus motif, we determined the crystal structures of SPSB1, SPSB2, and SPSB4, as well as their binding modes and affinities for both Par-4 and VASA. Mutation of each of the three Asn residues in Par-4 abrogated binding to all three SPSB proteins, while changing EL to DI enhanced binding. By comparison to SPSB1 and SPSB4, the more divergent protein SPSB2 showed only weak binding to Par-4 and was hypersensitive to DI substitution. Par-4(59-77) binding perturbed NMR resonances from a number of SPSB2 residues flanking the ELNNN binding site, including loop D, which binds the EL/DI sequence. Although interactions with the consensus peptide motif were conserved in all structures, flanking sites in SPSB2 were identified as sites of structural change. These structural changes limit high-affinity interactions for SPSB2 to aspartate-containing sequences, whereas SPSB1 and SPSB4 bind strongly to both Par-4 and VASA peptides.  相似文献   

5.
Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.  相似文献   

6.
Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS sig-nal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.  相似文献   

7.
8.
9.
Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.  相似文献   

10.
11.
Nitric oxide (NO) is an important regulator of immune responses. Effects of cytokines, such as tumor necrosis factor (TNF)-alpha or IFN-gamma, and bacterial products, such as lipopolysaccharide, on macrophage NO production have been well documented; however, the role of the extracellular matrix proteins, including collagen, in this process remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, was expressed in human macrophages, and its activation facilitated their differentiation as well as cytokine/chemokine production. Here, we examined the role for DDR1 in collagen-induced NO production using the murine macrophage cell line J774 cells that endogenously express DDR1. Activation of J774 cells with collagen induced the expression of inducible NO synthase (iNOS) and NO production. Inhibition of DDR1, but not beta1-integrins, abolished collagen-induced iNOS and NO production. Activation of J774 cells with collagen-activated nuclear factor-kappaB, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) and a pharmacological inhibitor of each signaling molecule significantly reduced collagen-induced NO production. Thus, we have demonstrated, for the first time, that the interaction of DDR1 with collagen induces iNOS expression and subsequent NO synthesis in J774 cells through activation of NF-kappaB, p38 MAPK, and JNK and suggest that intervention of DDR1 signaling in macrophages may be useful in controlling inflammatory diseases in which NO plays a critical role.  相似文献   

12.
We investigated apoptotic cell death in murine macrophage cell line J774.1 following Actinobacillus actinomycetemcomitans infection. Infected macrophages generally kill bacteria within phagosomes with nitric oxide (NO). Our previous study demonstrated that DNA fragmentation in infected cells increased significantly on addition of S-Methylisothiourea (SMT), a selective inhibitor of inducible NO synthetase (iNOS). The purpose of the present study was to determine the mechanism via which NO affects apoptosis of infected macrophages. J774.1 cells were infected with A. actinomycetemcomitans Y4 at a bacterium/cell ratio of 500:1. The infected cells were then cultured in the presence or absence of SMT (400 microM). Culture supernatant was removed 21 h after the infection to measure LDH activity. Additionally, cellular proteins were extracted from the infected cells and measured for histone-associated DNA fragmentation and caspase-1, -3, -5, -6, -8, -9 activities. LDH activity and DNA fragmentation were significantly elevated by the infection; moreover, levels increased further on addition of SMT. Caspase activity of infected cells, particularly caspase-3, was significantly higher than that of uninfected cells. Furthermore, caspase activity increased on addition of SMT. These findings indicate that NO protects infected J774.1 cells, at least in part, against apoptotic cell death via a decrease in caspase activity.  相似文献   

13.
14.
On infiltrating inflamed tissue, macrophages respond to the local microenvironment and develop one of two broad phenotypes: classically activated (M1) macrophages that cause tissue injury and alternatively activated macrophages that promote repair. Understanding how this polarization occurs in vivo is far from complete, and in this study, using a Th1-mediated macrophage-dependent model of acute glomerulonephritis, nephrotoxic nephritis, we examine the role of suppressor of cytokine signaling (SOCS)1 and SOCS3. Macrophages in normal kidneys did not express detectable SOCS proteins but those infiltrating inflamed glomeruli were rapidly polarized to express either SOCS1 (27 +/- 6%) or SOCS3 (54 +/- 12%) but rarely both (10 +/- 3%). Rat bone marrow-derived macrophages incubated with IFN-gamma or LPS expressed SOCS1 and SOCS3, whereas IL-4 stimulated macrophages expressed SOCS1 exclusively. By contrast, incubation with IFN-gamma and LPS together suppressed SOCS1 while uniquely polarizing macrophages to SOCS3 expressing cells. Macrophages in which SOCS3 was knocked down by short interfering RNA responded to IFN-gamma and LPS very differently: they had enhanced STAT3 activity; induction of macrophage mannose receptor, arginase and SOCS1; restoration of IL-4 responsiveness that is inhibited in M1 macrophages; and decreased synthesis of inflammatory mediators (NO and IL-6) and costimulatory molecule CD86, demonstrating that SOCS3 is essential for M1 activation. Without it, macrophages develop characteristic alternatively activated markers when exposed to classical activating stimuli. Lastly, increased glomerular IL-4 in nephrotoxic nephritis inhibits infiltrating macrophages from expressing SOCS3 and was associated with attenuated glomerular injury. Consequently, we propose that SOCS3 is essential for development of M1 macrophages in vitro and in vivo.  相似文献   

15.
Tian H  Wang J  Zhang B  Di J  Chen F  Li H  Li L  Pei D  Zheng J 《PloS one》2012,7(5):e37200
MDA-7/IL-24 was involved in the specific cancer apoptosis through suppression of Bcl-2 expression, which is a key apoptosis regulatory protein of the mitochondrial death pathway. However, the underlying mechanisms of this regulation are unclear. We report here that tumor-selective replicating adenovirus ZD55-IL-24 leads to Bcl-2 S-denitrosylation and concomitant ubiquitination, which take part in the 26S proteasome degradation. IL-24-siRNA completely blocks Bcl-2 ubiquitination via reversion of Bcl-2 S-denitrosylation and protects it from proteasomal degradation which confirmed the significant role of MDA-7/IL-24 in regulating posttranslational modification of Bcl-2 in cancer cells. Nitric oxide (NO) is a key regulator of protein S-nitrosylation and denitrosylation. The NO donor, sodium nitroprusside (SNP), down-regulates Bcl-2 S-denitrosylation, attenuates Bcl-2 ubiquitination and subsequently counteracts MDA-7/IL-24 induced cancer cell apoptosis, whereas NO inhibitor 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (PTIO) shows the opposite effect. At the same time, these NO modulators fail to affect Bcl-2 phosphorylation, suggesting that NO regulates Bcl-2 stability in a phosphorylation-independent manner. In addition, Bcl-2 S-nitrosylation reduction induced by ZD55-IL-24 was attributed to both iNOS decrease and TrxR1 increase. iNOS-siRNA facilitates Bcl-2 S-denitrosylation and ubiquitin-degradation, whereas the TrxR1 inhibitor auranofin prevents Bcl-2 from denitrosylation and ubiquitination, thus restrains the caspase signal pathway activation and subsequent cancer cell apoptosis. Taken together, our studies reveal that MDA-7/IL-24 induces Bcl-2 S-denitrosylation via regulation of iNOS and TrxR1. Moreover, denitrosylation of Bcl-2 results in its ubiquitination and subsequent caspase protease family activation, as a consequence, apoptosis susceptibility. These findings provide a novel insight into MDA-7/IL-24 induced growth inhibition and carcinoma apoptosis.  相似文献   

16.
The induction of cytokine synthesis by flagellin is mediated by a Toll-like receptor 5 (TLR5) signaling pathway. Although flagellin activation of the IL-1R-associated kinase and induction of TNF-alpha synthesis are dependent on TLR5 and not TLR4, we have found that flagellin stimulates NO in macrophages via a pathway that requires TLR5 and TLR4. Flagellin induced NO synthesis in HeNC2 cells, a murine macrophage cell line that expresses wild-type TLR4, but not in TLR4-mutant or -deficient GG2EE and 10ScNCr/23 cells. Flagellin stimulated an increase in inducible NO synthase (iNOS) mRNA and activation of the iNOS promoter. TLR5 forms heteromeric complexes with TLR4 as well as homomeric complexes. IFN-gamma permitted GG2EE and 10ScNCr/23 cells to produce NO in response to flagellin. Flagellin stimulated IFN-beta synthesis and Stat1 activation. The effect of flagellin on iNOS gene expression was inhibited by a Stat1 mutant protein. Taken together, these results support the conclusions that flagellin induces distinct patterns of inflammatory mediators depending on the nature of the TLR5 signaling complex and that the induction of NO by flagellin involves signaling via TLR5/TLR4 complexes.  相似文献   

17.
Expression of inducible nitric-oxide (NO) synthase (iNOS) and "high-output" production of NO by macrophages mediates many cytotoxic actions of these immune cells. However, macrophages have also been shown to express a constitutive NOS isoform, the function of which remains obscure. Herein, bone marrow-derived macrophages (BMDM?s) from wild-type and endothelial NOS (eNOS) knock-out (KO) mice have been used to assess the role of this constitutive NOS isoform in the regulation of macrophage activation. BMDM?s from eNOS KO animals exhibited reduced nuclear factor-kappaB activity, iNOS expression, and NO production after exposure to lipopolysaccharide (LPS) as compared with cells derived from wild-type mice. Soluble guanylate cyclase (sGC) was identified in BMDM?s at a mRNA and protein level, and activation of cells with LPS resulted in accumulation of cyclic GMP. Moreover, the novel non-NO-based sGC activator, BAY 41-2272, enhanced BMDM? activation in response to LPS, and the sGC inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one attenuated activation. These observations provide the first demonstration of a pathophysiological role for macrophage eNOS in regulating cellular activation and suggest that NO derived from this constitutive NOS isoform, in part via activation of sGC, is likely to play a pivotal role in the initiation of an inflammatory response.  相似文献   

18.
Suppressors of cytokine signaling (SOCS) are Src homology-2-containing proteins originally identified as negative regulators of cytokine signaling. Accumulating evidence indicates a role for SOCS proteins in the regulation of additional signaling pathways including receptor tyrosine kinases. Notably, SOCS36E, the Drosophila ortholog of mammalian SOCS5, was recently implicated as a negative regulator of the Drosophila ortholog of EGFR. In this study, we aimed at characterizing the role of SOCS5 in the negative regulation of EGFR. Here we show that the expression of SOCS5 and its closest homolog SOCS4 is elevated in cells following treatment with EGF, similar to several negative feedback regulators of EGFR whose expression is up-regulated upon receptor activation. The expression of SOCS5 led to a marked reduction in EGFR expression levels by promoting EGFR degradation. The reduction in EGFR levels and EGF-induced signaling in SOCS5-expressing cells requires both the Src homology-2 and SOCS box domains of SOCS5. Interestingly, EGFR is degraded by SOCS5 prior to EGF treatment in a ligand- and c-Cbl-independent manner. SOCS5 can associate with EGFR and can also bind the ElonginBC protein complex via its SOCS box, which may recruit an E3 ubiquitin ligase to promote EGFR degradation. Thus, we have characterized a novel function for SOCS5 in regulating EGFR and discuss its potential role in controlling EGFR homeostasis.  相似文献   

19.
High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  相似文献   

20.
Nitric oxide (NO) produced by an inducible nitric oxide synthase (iNOS or NOS2) plays a major microbicidal role in murine macrophages and its importance is now emerging also in the dog and human models. In dogs we demonstrated that macrophages in vitro infected with Leishmania infantum produced NO, after stimulation with cytokine-enriched peripheral blood mononuclear cell supernatants. In addition, parasite killing was reduced by the NOS inhibitor L-NG monomethylarginine. On the contrary, canine blood monocytes before macrophage differentiation did not release NO, and their leishmanicidal activity was instead correlated with superoxide anion and interferon (IFN)-gamma production. In human macrophage cultures, after infection with Leishmania infantum, we showed both iNOS expression by immunofluorescence and western blotting and NO release by the Griess reaction for nitrites. Various cytokines and prostaglandins can differently modulate NO synthesis. In our experiments, stimulation by recombinant human IFN-gamma and bacterial lipopolysaccharide greatly enhanced iNOS expression and NO production in human macrophages. In addition, the prostaglandin E2 increased NO release in activated, Leishmania-infected human macrophages. These results are interesting in the light of a possible immunological or pharmacological regulation of NO synthesis and microbicidal functions of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号