首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introductions of non-native predators and competitors appear to contribute to worldwide amphibian declines; however, potential negative impacts of invasive plants on habitat quality and amphibian populations have not been examined. Loss of diversity and alterations in ecosystem function associated with plant invasions may disrupt food webs, potentially leading to further declines of already threatened amphibian populations. We used a combination of small bins, mesocosms, and field experiments to examine the impacts of Eurasian purple loosestrife (Lythrum salicaria) replacing native cattails (Typha latifolia) in North American freshwater wetlands on survival, developmental rate, and diet (freshwater algae) of American toad (Bufo americanus) tadpoles. Tadpoles developed slower in L. salicaria compared to tadpoles developing in T. latifolia. This effect was consistent across experimental venues, although mesocosms showed this effect only in the second year of our study. Survival and development rates were always more variable in purple loosestrife than in cattail. In bins, tadpoles showed significantly reduced survival when raised in purple loosestrife extract and addition of leaf litter exacerbated this negative effect. Tadpole survival rates in mesocosms and field cages were not significantly different between plant species, most likely an effect of high variability among replicates. We suspect a combination of direct toxicity of high tannin concentrations in L. salicaria leaves and their indirect negative impacts on aquatic food webs are responsible for these results. Tadpole gut analyses revealed differences in algal communities among venues and between L. salicaria and T. latifolia suggesting that alterations in tadpole food quality and quantity contribute to the observed reduced tadpole performance. The replacement of native wetland plant species by L. salicaria does not represent a simple exchange of ecological equivalents and the function of invaded habitats for native species has clearly changed. While we were investigating only a single amphibian species, our results suggest that the impact of L. salicaria on ecosystem processes and aquatic food webs may be more general and likely to negatively affect other wetland species. The threats non-indigenous plants represent for amphibian populations and food webs may be underestimated, and warrant further investigation.  相似文献   

2.
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.  相似文献   

3.
Limited data from terrestrial ecosystems suggest that invasive species can affect energy flow and nutrient cycling in invaded systems. This is likely also true for aquatic ecosystems, yet little information is available on food web effects of invasive macrophytes. This study examined the effects of dominant invasive Eurasian watermilfoil on lake trophic structure and energy flow. Stable isotopes of carbon and nitrogen were used to compare trophic structure in invaded and uninvaded lakes and macrophyte stands. Contribution of native and invasive macrophytes, their epiphyton and detritus to the upper trophic level of lacustrine food webs was partitioned using mixing models. Carbon isotope values of macroinvertebrate consumers were similar to macrophyte-associated production in stands from which they were collected. However, contribution of Eurasian watermilfoil and its epiphyton to higher trophic level was negligible, and littoral fish derived most of their energy from sources associated with native macrophytes, despite their lower abundance. This means that littoral fish may depend on the remaining patches of native macrophytes in lakes invaded by non-native plants. Considering previous findings, these results show that the assessment of ecosystem-level processes is needed to understand the entire range of impacts of invasive species.  相似文献   

4.
Most ecosystems are recipients of allochthonous materials that enhance in situ productivity. Recent theoretical and empirical studies suggest that low to moderate inputs can stabilize food webs. However, depending on the trophic levels that use the resource, food webs can become unstable as inputs increase. Where large amounts of agricultural resources are transferred to natural habitats, trophic dynamics change: trophic cascades can occur and rare or uncommon species can become invasive. Rates of change in species abundances can also be amplified by the effects of changes in legislation and management practices on subsidized consumers.  相似文献   

5.
Marine anthropogenic structures offer novel niches for introduced species but their role in the subsequent invasion to natural habitats remains unknown. Upon arrival in new environments, invaders must overcome biotic resistance from native competitors and predators if they are to establish successfully in natural habitats. We tested the hypotheses that (1) artificial structures (e.g., suspended aquaculture installations) present a niche opportunity for invasive species by providing a refuge from native benthic predators, and (2) native predators in natural benthic habitats suppress successful colonization by invaders. A recruitment experiment showed that the ascidians Pyura chilensis (native) and Ciona intestinalis (invasive) could recruit to both suspended artificial structures and natural benthic habitats. Ciona, however, was only able to establish adult populations on artificial structures. In natural benthic habitats Ciona only recruited and grew in predator-exclusion cages, because without this protection predation prevented its establishment. In predation experiments, native invertebrate and fish predators removed all invasive ascidians (recruits and adults) in benthic habitats, which contrasted with the high adult survival of the native ascidian P. chilensis. The refuge from a number of benthic predators facilitates the establishment of large populations of invasive species on suspended structures. We present a conceptual model of the invasion processes that includes the anthropogenic structures as a transitional stepping-stone that facilitates invasion by enhancing and prolonging propagule supply to surrounding natural communities. Those established invaders might then overcome biotic resistance during time periods when populations of consumers or competitors are weakened by natural or anthropogenic disturbances. Our results suggest that the conservation of natural habitats with a high diversity of native predators can be an effective means to prevent the spread of invasive species growing on suspended structures.  相似文献   

6.
Studies examining the impacts of introduced species on food webs often focus on the top-down effects of introduced predators. However, marine and estuarine systems have been invaded by plants that have the potential to alter carbon and nitrogen sources available to consumers. In San Francisco Bay, California, USA, hybridized cordgrass Spartina alterniflora × foliosa is adding C4 carbon biomass to this system. We used natural abundances of stable isotopes of carbon and nitrogen to examine whether infaunal and epifaunal food webs reflected the large detrital input from hybrid Spartina. We compared stable isotope signatures among macrofaunal invertebrate consumers collected in hybrid Spartina, native S. foliosa, or unvegetated mudflats. We found no additional shift towards hybrid Spartina in hybrid areas. Structural changes brought about by an invasive ecosystem engineer, specifically increased biomass and detrital inputs, do not necessarily result in its increased incorporation into the food web.  相似文献   

7.
Exotic plant invasion can have dramatic impacts on native plants making restoration of native vegetation at invaded sites challenging. Though invasives may be superior competitors, it is possible their dominance could be enhanced by insect herbivores if native plants are preferred food sources. Insect herbivory can regulate plant populations, but little is known of its effects in restoration settings. There is a need to better understand relationships between insect herbivores and invasive plants with regard to their combined potential for impacting native plant establishment and restoration success. The objective of this study was to assess impacts of grasshopper herbivory and the invasive grass Bromus tectorum (cheatgrass) on mortality and growth of 17 native plant species used in restoration of critical sagebrush steppe ecosystems. Field and greenhouse experiments were conducted using moderate densities of a common, generalist pest grasshopper (Melanoplus bivittatus). Grasshoppers had stronger and more consistent impacts on native restoration plants in field and greenhouse studies than cheatgrass. After 6 weeks in the greenhouse, grasshoppers were associated with 36% mortality over all native restoration species compared to 2% when grasshoppers were absent. Herbivory was also associated with an approximately 50% decrease in native plant biomass. However, effects varied among species. Artemisia tridentata, Chrysothamnus viscidiflorus, and Coreopsis tinctoria were among the most negatively impacted, while Oenothera pallida, Pascopyrum smithii, and Leymus cinerus were unaffected. These findings suggest restoration species could be selected to more effectively establish and persist within cheatgrass infestations, particularly when grasshopper populations are forecasted to be high.  相似文献   

8.
The gypsy moth is considered one of the most harmful invasive forest insects in North America. It has been suggested that gypsy moth may indirectly impact native caterpillar communities via shared parasitoids. However, the impact of gypsy moth on forest insect food webs in general remains unstudied. Here we assess such potential impacts by surveying forest insect food webs in Ontario, Canada. We systematically collected caterpillars using burlap bands at sites with and without histories of gypsy moth outbreak, and then reared these caterpillars until potential parasitoid emergence. This procedure allowed us to generate quantitative food webs describing caterpillar-parasitoid interactions. We estimated the degree of parasitoid sharing between gypsy moth and native caterpillars. We also statistically modeled the effect of gypsy moth outbreak history and current gypsy moth abundance on standard indices of quantitative food web structure and the diversity of parasitoid communities. Rates of gypsy moth parasitism were very low and gypsy moth shared very few parasitoids with native caterpillars, suggesting limited potential for indirect interactions. We did not detect any significant effects of gypsy moth on either food web structure or parasitoid diversity, and the small amount of parasitoid sharing strongly implies that this lack of significance is not merely due to low statistical power. Our study suggests that gypsy moth has limited impact on native host-parasitoid food webs, at least for species that use burlap bands. Our results emphasize that extrapolations of theoretical and experimental conclusions on the impacts of invasive species should be tested in natural settings.  相似文献   

9.
Aquatic plants mediate ecological processes in aquatic habitats, specifically predator–prey (bluegill sunfish (Lepomis macrochirus Rafinesque)-macroinvertebrate) interactions. Macroinvertebrate colonization is directly and indirectly influenced by substrate heterogeneity, interstitial space, and surface complexity. Exotic invasive plant species, such as Hydrilla verticillata L.F. Royle, may alter the available structure in aquatic habitat by creating a shift to a homogeneous habitat, thus affecting the macroinvertebrate community. Since macroinvertebrates provide a food base for young phytophilic fishes, changes in their density and abundance may alter food webs. We investigated the hypothesis that macroinvertebrate community structure is influenced by differences in habitat heterogeneity by measuring difference between a heterogeneous native aquatic plant bed, homogenous hydrilla plant bed, and habitat with no plants. Studies were conducted in the field (pond) and the experimental treatments were: (1) no plants, (2) monotypic bed of hydrilla, and (3) diverse native plants. Aquatic plants, regardless of species, supported greater macroinvertebrate abundance, richness, and biomass. Macroinvertebrate abundance, richness, and biomass in a hydrilla-dominated habitat did not differ significantly from a diverse plant habitat, except for richness in October. Indicator taxa did differ significantly between respective treatments, suggesting a change in species composition. However, no significant effect of fish predation on macroinvertebrate populations and/or community structure was documented. The data suggest that a shift from a natural mosaic of vegetated habitat to a highly complex monotypic habitat (e.g., exotic hydrilla) may reduce spatial heterogeneity important to structuring a macroinvertebrate assemblage. Handling editor: S. M. Thomaz  相似文献   

10.
SM Murphy  GM Wimp  D Lewis  RF Denno 《PloS one》2012,7(8):e43929
Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration of anthropogenic nutrient subsidies affects native ecosystems.  相似文献   

11.
Pest management is expensive and there is often uncertainty about the benefits for the resources being protected. There can also be unintended consequences for other parts of the ecosystem, especially in complex food webs. In making decisions managers generally have to rely on qualitative information collected in a piecemeal fashion. A method to assist decision making is a qualitative modelling approach using fuzzy cognitive maps, a directed graphical model related to neural networks that can take account of interactions between pests and conservation assets in complex food webs. Using all available information on relationships between native and exotic resources and consumers, we generated hypotheses about potential consequences of single‐species and multi‐species pest control on the long‐term equilibrium abundances of other biotic components of an ecosystem. We applied the model to a dryland ecosystem in New Zealand because we had good information on its trophic structure, but the information on the strength of species interactions was imprecise. Our model suggested that pest control is unlikely to significantly boost native invertebrates and lizards in this ecosystem, suggesting that other forms of management may be required for these groups. Most of the pest control regimes tested resulted in greater abundances of at least one other pest species, which could potentially lead to other management problems. Some of the predictions were unexpected, such as more birds resulting from possum and mouse control. We also modelled the effects of an increase in invasive rabbits, which led to unexpected declines of stoats, weasels, mice and possums. These unexpected outcomes resulted from complex indirect pathways in the food web. Fuzzy cognitive maps allow rapid construction of prototype models of complex food webs using a wide range of data and expert opinion. Their utility lies in providing direction for future monitoring efforts and generating hypotheses that can be tested with field experiments.  相似文献   

12.
Introduced species negatively impact native species through competitive and trophic interactions, particularly on oceanic islands that have never been connected to any continental landmass. However, there are few studies on the relative importance of competitive interactions (resource competition with introduced species) and trophic interactions (predation or herbivory by introduced species) with respect to the negative impacts on native organisms on oceanic islands. A literature review on introduced and native species of the oceanic Ogasawara (Bonin) Islands in the western Pacific Ocean indicated that many native species (e.g., bees, beetles, damselflies, butterflies, land snails, birds, and plants) have been negatively impacted by introduced predators and herbivores (e.g., lizards, rats, flatworms, and goats). Several native plants and bees have been negatively affected by introduced competitors. However, the native species that have competed with introduced species have also suffered from either intense herbivory or predation by other introduced species. Thus, introduced predators and herbivores have had greater impacts on native species than introduced competitors in the Ogasawara Islands.  相似文献   

13.
We studied the feeding ecology of the critically endangered Red‐headed Wood Pigeon Columba janthina nitens, a subspecies endemic to a very remote and highly disturbed oceanic island chain, the Ogasawara Islands. An analysis based on high‐throughput sequencing (HTS) was undertaken on 627 faecal samples collected over 2 years from two island habitats, and food availability and the nutrient composition of the major fruits were also estimated. The HTS diet analysis detected 122 food plant taxa and showed clear seasonal and inter‐island variation in the diet of the Pigeons. The results indicated a preference for lipid‐rich fruits, but the diet changed according to the availability of food resources, perhaps reflecting the foraging strategy of the Pigeons in isolated island habitats with poor food resources. Pigeons also frequently consumed introduced plants at certain times of year, perhaps compensating for the lack of preferred native food resources. However, the degree of dependence on introduced plants appeared to differ between the two island habitats, so the different impacts of introduced plant eradication on the foraging conditions for the Pigeons on each island should be considered. HTS diet analysis combined with field data may be useful for monitoring the foraging conditions of endangered species and may also inform an appropriate conservation strategy in oceanic island ecosystems with complicated food webs that include both native and introduced species.  相似文献   

14.
African tilapias (Oreochromis spp.) occur in more than 100 countries outside of their native ranges and research on their invasions is largely lacking. We investigated spatiotemporal patterns of tilapia spread into 29 drainage basins in Belize and parts of Guatemala and Mexico, drawing on field data and interviews with fishermen. Habitat-suitability models for tilapias were created from geospatial and species occurrence data, and fishermen interviews were used to reconstruct the chronology of tilapia spread into predicted suitable habitats. Tilapia (predominantly Nile tilapia, O. niloticus) presence was confirmed at 78 sites in 9 of 29 drainage basins. Our habitat-suitability model predicted that 7,510 linear km of river habitat in the study area were vulnerable to colonization by tilapias, predominately in mid- to low elevation main stem rivers, from sea level to 277 m above sea level. The reconstructed spatial chronology of spread showed that the invasion started in 1990 and progressed slowly (2 km yr?1) through an establishment phase before rapid expansion (~30 km yr?1) between 1996 and 2002, after which new detections slowed. Human movement of fish for aquaculture was identified as a primary cause of dispersal that interacted with flooding as an important secondary cause. The shortest paths across low elevation drainage divides between major basins revealed several potential corridors for future tilapia spread during flooding. Research into tilapia spatial metapopulation structure and economic fisheries status, more stringent regulation of aquaculture activities, pro-active fisheries management, and development of policies to screen potentially invasive species before importation are recommended to avoid additional releases of tilapia and further spread in the region.  相似文献   

15.
Coll M  Schmidt A  Romanuk T  Lotze HK 《PloS one》2011,6(7):e22591
Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results.  相似文献   

16.
Community structure is controlled, among multiple factors, by competition and predation. Using the R* rule and graphical analysis, we analyse here the feasibility, stability and assembly rules of resource-based food webs with up to three trophic levels. In particular, we show that (1) the stability of a food web with two plants and two generalist herbivores does not require that plants' resource exploitation abilities trade-off with resistance to the two herbivores, and (2) food webs with two plants and either one generalist herbivore and a carnivore or two generalist herbivores and two generalist carnivores are not feasible because of cascade competition between top consumers. The relative strength of species interactions and the relative impacts of plants and herbivores on factors which control their growth also play a critical role. We discuss how community structure constrains assembly rules and yields cascades of extinctions in food webs.  相似文献   

17.
Invasive species are one of the widespread stressors of aquatic ecosystems. Several studies document food web effects of invasive fish, but little information is available on the effects of invasive macrophytes. We studied differences in food chain length as well as trophic position and trophic diversity of fish and odonates in lakes dominated by native plants or invasive Eurasian watermilfoil. Trophic position and food chain length were determined using baseline-adjusted δ15N isotope signatures. Trophic diversity, or isotope niche width, was estimated from convex hull area analysis. Results show that trophic position of secondary consumers was not affected by the invasive macrophyte, whereas trophic diversity was greater in watermilfoil-dominated lakes. The direction of isotopic niche expansion was different in fish and odonates, suggesting potential decoupling in predator–prey interactions. This study shows that dominant non-native macrophytes may cause significant changes in food web structure of invaded ecosystems. Trophic diversity may be a more sensitive indicator of environmental stress than trophic position and has the potential to be used for assessment of invasive species impacts and restoration success.  相似文献   

18.
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.  相似文献   

19.
外来杂草入侵的化学机制   总被引:49,自引:9,他引:49  
由外来杂草入侵引发的严重生态和经济问题已倍受关注,外来杂草在新生境成功入侵,除了具备一些基本的生物生态学特征外,还应具备一些特有的入侵机制,阐明外来杂草的各种入侵机制可以为入侵杂草的预测和控制提供科学依据。外来杂草只有在新生境中与原产地生物种间的相互作用中取得优势,才能定植并扩增种群而成功入侵.在这些外来杂草和原产地生物种间的相互作用关系中,化学关系是不可忽视的方面.目前研究已经证实:植物的化感作用在外来杂草成功入侵中发挥着重要的作用.事实上,植物也可以通过合成和释放特定的化学物质防御或抑制新生境的动物、植物和微生物.外来杂草入侵的化学机制涉及到植物化学生态学的各个方面。因此,外来杂草的化学生态学特征应作为入侵种预测的重要指标之一,外来杂草入侵的化学机制应是今后重要的研究方向。  相似文献   

20.
Biodiversity and ecosystem function: the consumer connection   总被引:14,自引:1,他引:13  
J. Emmett Duffy 《Oikos》2002,99(2):201-219
Proposed links between biodiversity and ecosystem processes have generated intense interest and controversy in recent years. With few exceptions, however, empirical studies have focused on grassland plants and laboratory aquatic microbial systems, whereas there has been little attention to how changing animal diversity may influence ecosystem processes. Meanwhile, a separate research tradition has demonstrated strong top‐down forcing in many systems, but has considered the role of diversity in these processes only tangentially. Integration of these research directions is necessary for more complete understanding in both areas. Several considerations suggest that changing diversity in multi‐level food webs can have important ecosystem effects that can be qualitatively different than those mediated by plants. First, extinctions tend to be biased by trophic level: higher‐level consumers are less diverse, less abundant, and under stronger anthropogenic pressure on average than wild plants, and thus face greater risk of extinction. Second, unlike plants, consumers often have impacts on ecosystems disproportionate to their abundance. Thus, an early consequence of declining diversity will often be skewed trophic structure, potentially reducing top‐down influence. Third, where predators remain abundant, declining diversity at lower trophic levels may change effectiveness of predation and penetrance of trophic cascades by reducing trait diversity and the potential for compensation among species within a level. The mostly indirect evidence available provides some support for this prediction. Yet effects of changing animal diversity on functional processes have rarely been tested experimentally. Evaluating impacts of biodiversity loss on ecosystem function requires expanding the scope of current experimental research to multi‐level food webs. A central challenge to doing so, and to evaluating the importance of trophic cascades specifically, is understanding the distribution of interaction strengths within natural communities and how they change with community composition. Although topology of most real food webs is extremely complex, it is not at all clear how much of this complexity translates to strong dynamic linkages that influence aggregate biomass and community composition. Finally, there is a need for more detailed data on patterns of species loss from real ecosystems (community “disassembly” rules).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号