首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Based on introspectionist, semantic, and psychophysiological experimental frameworks, it has long been assumed that all affective states derive from two independent basic dimensions, valence and arousal. However, until now, no study has investigated whether valence and arousal are also dissociable at the level of affect-related changes in cognitive processing.

Methodology/Principal Findings

We examined how changes in both valence (negative vs. positive) and arousal (low vs. high) influence performance in tasks requiring executive control because recent research indicates that two dissociable cognitive components are involved in the regulation of task performance: amount of current control (i.e., strength of filtering goal-irrelevant signals) and control adaptation (i.e., strength of maintaining current goals over time). Using a visual pop-out distractor task, we found that control is exclusively modulated by arousal because interference by goal-irrelevant signals was largest in high arousal states, independently of valence. By contrast, control adaptation is exclusively modulated by valence because the increase in control after trials in which goal-irrelevant signals were present was largest in negative states, independent of arousal. A Monte Carlo simulation revealed that differential effects of two experimental factors on control and control adaptation can be dissociated if there is no correlation between empirical interference and conflict-driven modulation of interference, which was the case in the present data. Consequently, the observed effects of valence and arousal on adaptive executive control are indeed dissociable.

Conclusions/Significance

These findings indicate that affective influences on cognitive processes can be driven by independent effects of variations in valence and arousal, which may resolve several heterogeneous findings observed in previous studies on affect-cognition interactions.  相似文献   

2.
Given that both auditory and visual systems have anatomically separate object identification ("what") and spatial ("where") pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what") vs. spatial ("where") aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what") vs. sound location ("where"). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.  相似文献   

3.
The sophisticated analysis of gestures and vocalizations, including assessment of their emotional valence, helps group-living primates efficiently navigate their social environment. Deficits in social information processing and emotion regulation are important components of many human psychiatric illnesses, such as autism, schizophrenia and social anxiety disorder. Analyzing the neurobiology of social information processing and emotion regulation requires a multidisciplinary approach that benefits from comparative studies of humans and animal models. However, many questions remain regarding the relationship between visual attention and arousal while processing social stimuli. Using noninvasive infrared eye-tracking methods, we measured the visual social attention and physiological arousal (pupil diameter) of adult male rhesus monkeys (Macaca mulatta) as they watched social and nonsocial videos. We found that social videos, as compared to nonsocial videos, captured more visual attention, especially if the social signals depicted in the videos were directed towards the subject. Subject-directed social cues and nonsocial nature documentary footage, compared to videos showing conspecifics engaging in naturalistic social interactions, generated larger pupil diameters (indicating heightened sympathetic arousal). These findings indicate that rhesus monkeys will actively engage in watching videos of various kinds. Moreover, infrared eye tracking technology provides a mechanism for sensitively gauging the social interest of presented stimuli. Adult male rhesus monkeys' visual attention and physiological arousal do not always trend in the same direction, and are likely influenced by the content and novelty of a particular visual stimulus. This experiment creates a strong foundation for future experiments that will examine the neural network responsible for social information processing in nonhuman primates. Such studies may provide valuable information relevant to interpreting the neural deficits underlying human psychiatric illnesses such as autism, schizophrenia and social anxiety disorder.  相似文献   

4.

Background

Experimental research has shown that emotional stimuli can either enhance or impair attentional performance. However, the relative effects of specific emotional stimuli and the specific time course of these differential effects are unclear.

Methodology/Principal Findings

In the present study, participants (n = 50) searched for a single target within a rapid serial visual presentation of images. Irrelevant fear, disgust, erotic or neutral images preceded the target by two, four, six, or eight items. At lag 2, erotic images induced the greatest deficits in subsequent target processing compared to other images, consistent with a large emotional attentional blink. Fear and disgust images also produced a larger attentional blinks at lag 2 than neutral images. Erotic, fear, and disgust images continued to induce greater deficits than neutral images at lag 4 and 6. However, target processing deficits induced by erotic, fear, and disgust images at intermediate lags (lag 4 and 6) did not consistently differ from each other. In contrast to performance at lag 2, 4, and 6, enhancement in target processing for emotional stimuli was observed in comparison to neutral stimuli at lag 8.

Conclusions/Significance

These findings suggest that task-irrelevant emotion information, particularly erotica, impairs intentional allocation of attention at early temporal stages, but at later temporal stages, emotional stimuli can have an enhancing effect on directed attention. These data suggest that the effects of emotional stimuli on attention can be both positive and negative depending upon temporal factors.  相似文献   

5.
BACKGROUND: Arousal levels in the brain set thresholds for behavior, from simple to complex. The mechanistic underpinnings of the various phenomena comprising arousal, however, are still poorly understood. Drosophila behaviors have been studied that span different levels of arousal, from sleep to visual perception to psychostimulant responses. RESULTS: We have investigated neurobiological mechanisms of arousal in the Drosophila brain by a combined behavioral, genetic, pharmacological, and electrophysiological approach. Administration of methamphetamine (METH) suppresses sleep and promotes active wakefulness, whereas an inhibitor of dopamine synthesis promotes sleep. METH affects courtship behavior by increasing sexual arousal while decreasing successful sexual performance. Electrophysiological recordings from the medial protocerebrum of wild-type flies showed that METH ingestion has rapid and detrimental effects on a brain response associated with perception of visual stimuli. Recordings in genetically manipulated animals show that dopaminergic transmission is required for these responses and that visual-processing deficits caused by attenuated dopaminergic transmission can be rescued by METH. CONCLUSIONS: We show that changes in dopamine levels differentially affect arousal for behaviors of varying complexity. Complex behaviors, such as visual perception, degenerate when dopamine levels are either too high or too low, in accordance with the inverted-U hypothesis of dopamine action in the mammalian brain. Simpler behaviors, such as sleep and locomotion, show graded responses that follow changes in dopamine level.  相似文献   

6.
Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis   总被引:6,自引:0,他引:6  
The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.  相似文献   

7.
The absorption and regenerability characteristics are compared for rhodopsin contained in rod outer segment membranes and purified in a series of alkyl sucrose esters. It is found that membrane-bound rhodopsin has maximum absorbance from 504 to 500 nm between 1.5 and 40 degrees C. After purification, rhodopsin absorbance can be blue-shifted by up to 6 nm, depending on the detergent species used. Only the longest chain sucrose esters give purified rhodopsin with maximum absorbance comparable to that of the native pigment. In the same manner, detergent-purified rhodopsin will be easily regenerated as long as its native spectral characteristics are maintained. Sucrose esters thus prove to be mild enough to maintain rhodopsin functionality with respect to these two properties and could probably be used successfully to maintain other membrane proteins' integrity.  相似文献   

8.
Saccadic adaptation [1] is a powerful experimental paradigm to probe the mechanisms of eye movement control and spatial vision, in which saccadic amplitudes change in response to false visual feedback. The adaptation occurs primarily in the motor system [2, 3], but there is also evidence for visual adaptation, depending on the size and the permanence of the postsaccadic error [4-7]. Here we confirm that adaptation has a strong visual component and show that the visual component of the adaptation is spatially selective in external, not retinal coordinates. Subjects performed?a memory-guided, double-saccade, outward-adaptation task designed to maximize visual adaptation and to dissociate the visual and motor corrections. When the memorized saccadic target was in the same position (in external space) as that used in the adaptation training, saccade targeting was strongly influenced by adaptation (even if not matched in retinal or cranial position), but when in the same retinal or cranial but different external spatial position, targeting was unaffected by adaptation, demonstrating unequivocal spatiotopic selectivity. These results point to the existence of a spatiotopic neural representation for eye movement control that adapts in response to saccade error signals.  相似文献   

9.
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.  相似文献   

10.
The effect of focal visual attention on backward pattern masking was investigated using an orientation discrimination task. The results show that attention reduces primarily the effect of interruption masking, the later component of pattern masking, which occurs when the delay between the target and mask onset is about 50-150 ms. The strongest spatial cueing effect, i.e. the strongest reduction of the orientation discrimination threshold due to focal attention, was observed at intermediate (approximately 100 ms) target-to-mask stimulus onset asynchrony (SOA). There was a weak effect of cueing at shorter SOAs, and no or a very weak attentional effect was present at longer target-to-mask SOAs, where the pattern masking effect is absent. The dynamics of attentional modulation of backward pattern masking correlates closely with the dynamics of the attentional modulation of neuronal responses in the early visual cortex.  相似文献   

11.
We recorded laser-evoked potentials (LEPs) from 20 normal subjects by stimulating the skin with pulses from an infrared CO2 laser. The conduction velocity of the peripheral afferent fibers mediating the LEPs averaged 14.9 m/sec. The amplitude of the LEP components correlated significantly with perceived stimulus intensity. During repetitive constant intensity stimulation, the peak-to-peak LEP amplitude decreased 38% during a distraction task and 42% during drowsiness and was absent during stage 2 sleep, indicating a modulation of responsiveness to laser stimulation during distraction and decreased states of arousal. Normative data revealed considerable intersubject variability in LEP latencies and amplitudes. Analysis of intrasubject lateralized (side-to-side) differences revealed that the relative peak-to-peak amplitude was less variable than that of the N or P components. For clinical applications using 3 S.D.s to define the normal range, a lateral interpeak amplitude difference greater than 28% would suggest focal or lateralized sensory abnormality in an individual patient. Vigilance and attentiveness to the stimuli should be monitored during the acquisition of LEPs.  相似文献   

12.
Attention to a visual stimulus typically increases the responses of cortical neurons to that stimulus. Because many studies have shown a close relationship between the performance of individual neurons and behavioural performance of animal subjects, it is important to consider how attention affects this relationship. Measurements of behavioural and neuronal performance taken from rhesus monkeys while they performed a motion detection task with two attentional states show that attention alters the relationship between behaviour and neuronal response. Notably, attention affects the relationship differently in different cortical visual areas. This indicates that a close relationship between neuronal and behavioural performance on a given task persists over changes in attentional state only within limited regions of visual cortex.  相似文献   

13.
According to conventional neurobiological accounts of visual attention, attention serves to enhance extrastriate neuronal responses to a stimulus at one spatial location in the visual field. However, recent results from recordings in extrastriate cortex of monkeys suggest that any enhancing effect of attention is best understood in the context of competitive interactions among neurons representing all of the stimuli present in the visual field. These interactions can be biased in favour of behaviourally relevant stimuli as a result of many different processes, both spatial and non-spatial, and both bottom-up and top-down. The resolution of this competition results in the suppression of the neuronal representations of behaviourally irrelevant stimuli in extrastriate cortex. A main source of top-down influence may derive from neuronal systems underlying working memory.  相似文献   

14.
This study was undertaken to investigate the effects of instructional set and biofeedback modality upon the ability of 23 females to achieve control over sexual arousal. Two levels of instructional set (increase, decrease) were completely crossed with three feedback modalities (audio, visual, no feedback). Changes in vaginal blood volume (VBV) and vaginal pulse amplitude (VPA) were monitored by a vaginal plethysmograph and reduced on line by a microcomputer. During feedback trials, all subjects received audio- or visual feedback of the VBV response. Subjects participated in two sessions, each consisting of six 3-minute trials, one in each instruction/feedback combination. Order of trials was counterbalanced. Subjective levels of arousal, VBV, and VPA were significantly higher under increase instructions. Also, a significant feedback effect was noted in the subjective measure and the VBV measure, favoring visual feedback for overall control of sexual arousal. However, the feedback effect accounted for a small portion of the variance, and it was concluded that performance was not appreciably superior with or without feedback. Thus practical considerations may determine the feedback modality to be used for vaginal vasocongestion in future research. Higher positive correlations of subjective ratings with vaginal blood volume occurred during feedback trials, which suggests that biofeedback may be helpful in discrimination training to facilitate awareness of the feelings associated with different arousal levels and correct labeling of increased vasocongestion as sexual. Further research is necessary to see if sexually dysfunctional women can benefit from a biofeedback component in a comprehensive therapy program and to determine the effect of many training sessions on discrimination and self-control of arousal.  相似文献   

15.
16.

Background

Acoustic properties of vocalizations can vary with the internal state of the caller, and may serve as reliable indicators for a caller’s emotional state, for example to prevent conflicts. Thus, individuals may associate distinct characteristics in acoustic signals of conspecifics with specific social contexts, and adjust their behaviour accordingly to prevent escalation of conflicts. Common ravens (Corvus corax) crowd-forage with individuals of different age classes, sex, and rank, assemble at feeding sites, and engage in agonistic interactions of varying intensity. Attacked individuals frequently utter defensive calls in order to appease the aggressor. Here, we investigated if acoustic properties of defensive calls change with varying levels of aggression, and if bystanders respond to these changes.

Results

Individuals were more likely to utter defensive calls when the attack involved contact aggression, and when the attacker was higher in rank than the victim. Defensive calls produced during intense conflicts were longer and uttered at higher rates, and showed higher fundamental frequency- and amplitude-related measures than calls uttered during low-intensity aggression, indicating arousal-based changes in defensive calls. Playback experiments showed that ravens were more likely to react in response to defensive calls with higher fundamental frequency by orientating towards the speakers as compared to original calls and calls manipulated in duration.

Conclusions

Arousal-based changes are encoded in acoustic parameters of defensive calls in attacked ravens, and bystanders in the audience pay attention to the degree of arousal in attacked conspecifics. Our findings imply that common ravens can regulate conflicts with conspecifics by means of vocalizations, and are able to gather social knowledge from conspecific calls.
  相似文献   

17.
Neuropeptide S: a new player in the modulation of arousal and anxiety   总被引:2,自引:0,他引:2  
Neuropeptide S (NPS) is a newly identified transmitter that modulates arousal and fear responses. NPS activates an orphan G protein-coupled receptor that is expressed throughout the central nervous system, including brain centers that regulate sleep/wakefulness and anxiety. In contrast, the NPS precursor mRNA is found only in a few discrete nuclei in the brainstem as well as in a few scattered cells in the hypothalamus and amygdala. The most prominent expression of NPS precursor is found in a previously uncharacterized cluster of neurons in the pontine area, located between the noradrenergic locus ceruleus and Barrington's nucleus. Central administration of NPS induces long-lasting arousal and suppresses all stages of sleep. In addition, NPS produces an anxiolytic profile in a variety of behavioral models. The unique pharmacological spectrum of NPS makes it an interesting target for pharmaceutical development. It also enhances our understanding of the neurobiological mechanisms of sleep/wakefulness regulation and the neuronal processing of stress.  相似文献   

18.
Elicitins, produced by most of the phytopathogenic fungi of the genus Phytophthora, provoke in the tobacco plant both remote leaf necrosis and the induction of a resistance against subsequent attack by various micro-organisms. The crystal structure of b-cryptogein (CRY), secreted by Phytophthora cryptogea, was previously reported as well as the first structure of a SCP/sterol complex, the ergosterol-complexed, mutated CRY (K13H). In K13H, the ergosterol molecule is encapsulated in a large internal hydrophobic cavity which is not present in CRY. This binding induces a minor conformational change in the protein structure. Molecular dynamics studies were undertaken to precise the structural behaviour of CRY and K13H with respect to the complexation of the ergosterol. Although it is not possible to simulate the entrance of the ergosterol in the protein, we assume that capture and release of the ligand possibly both occur following the same path. Our results show that, in the complex K13H, the ergosterol molecule is pushed towards the residue 13 which play a key role in the necrotic activity of the protein. It is likely that the polarity of residue 13, favouring the binding of the hydroxyl of the ligand, would be involved in the recognition of the sterol and in an optimisation of its orientation. Thus, in a first step, the molecule of ergosterol would be rotated around itself to a position which makes possible, in a second step, its translation to the internal cavity, as a key in a keyhole.  相似文献   

19.
The display was composed of four boxes, horizontally aligned above the fixation point. In Experiment I, each box was cued by a digit shown at fixation. In Experiment II there were only two numeric cues, signalling the inner or the outer boxes, depending on the experimental condition. The subject was instructed to orient attention to the cued box, and to respond to the imperative stimulus as fast as possible, wherever it appeared. By using four time interval (SOAs), we tried to determine the route covered by attention movements. In Experiment I, with the shortest SOA (100 msec), it was shown that attention does not reach the cued box through a direct path. Rather it moves first on the inner boxes, thereafter focusing on the cued location. The same results were obtained in Experiment II, where the cue directed attention to the inner boxes. When the external boxes were cued, however, this trend was not observed.  相似文献   

20.
This study was undertaken to investigate the effects of instructional set and biofeedback modality upon the ability of 23 females to achieve control over sexual arousal. Two levels of instructional set (increase, decrease) were completely crossed with three feedback modalities (audio, visual, no feedback). Changes in vaginal blood volume (VBV) and vaginal pulse amplitude (VPA) were monitored by a vaginal plethysmograph and reduced on line by a microcomputer. During feedback trials, all subjects received audio- or visual feedback of the VBV response. Subjects participated in two sessions, each consisting of six 3-minute trials, one in each instruction/feedback combination. Order of trials was counterbalanced. Subjective levels of arousal, VBV, and VPA were significantly higher under increase instructions. Also, a significant feedback effect was noted in the subjective measure and the VBV measure, favoring visual feedback for overall control of sexual arousal. However, the feedback effect accounted for a small portion of the variance, and it was concluded that performance was not appreciably superior with or without feedback. Thus practical considerations may determine the feedback modality to be used for vaginal vasocongestion in future research. Higher positive correlations of subjective ratings with vaginal blood volume occurred during feedback trials, which suggests that biofeedback may be helpful in discrimination training to facilitate awareness of the feelings associated with different arousal levels and correct labeling of increased vasocongestion as sexual. Further research is necessary to see if sexually dysfunctional women can benefit from a biofeedback component in a comprehensive therapy program and to determine the effect of many training sessions on discrimination and self-control of arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号