首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
默认模式网络(default-mode network,DMN)是由在脑处于静息状态时相互联系、维持健康代谢活动的若干脑区组成的网络,主要包括楔前叶/后扣带回皮质、顶下小叶、内侧前额叶皮层的背侧和腹侧、内侧颞叶以及海马等脑区,在个体从事如自传性记忆提取、监控外界环境以及控制自身心理状态等多种事务中发挥着重要作用,且与记忆有关的结构被证实是DMN的核心成分。现已有研究表明DMN功能障碍可能会诱导β-淀粉样蛋白沉积形成老年斑,并最终导致阿尔茨海默病(Alzheimer’s disease,AD)的发病。因此,越来越多的学者将研究的重心放在了DMN功能障碍与AD发病的关系上。本文就近年来有关DMN组成、功能特别是与AD发病关系的研究作一简要回顾。  相似文献   

2.
Functional brain imaging in humans is beginning to reveal a network of brain regions that subserve topographical learning: the medial parietal lobe, the posterior cingulate gyrus, occipitotemporal areas, the parahippocampal gyrus and the right hippocampus. These findings illuminate the patient lesion literature where all of these brain regions have been implicated at one time or another in cases of topographical disorientation. Once topographical information is acquired, the neuroanatomy that supports its use from either episodic or semantic memory is similar to that activated during encoding. The specific contributions of extrahippocampal regions within the topographical memory system are being revealed, such as the role of the right parahippocampal gyrus in object-in-place encoding. The right hippocampus is clearly involved in processing spatial layouts over long as well as short time-courses, and participates in both the encoding and the retrieval of topographical memory. The ventromedial orbitofrontal cortex is recruited when information in the topographical memory system is not sufficient to produce direct navigation to a goal place.  相似文献   

3.
Default mode network (DMN) is a functional brain network with a unique neural activity pattern that shows high activity in resting states but low activity in task states. This unique pattern has been proved to relate with higher cognitions such as learning, memory and decision-making. But neural mechanisms of interactions between the default network and the task-related network are still poorly understood. In this paper, a theoretical model of coupling the DMN and working memory network (WMN) is proposed. The WMN and DMN both consist of excitatory and inhibitory neurons connected by AMPA, NMDA, GABA synapses, and are coupled with each other only by excitatory synapses. This model is implemented to demonstrate dynamical processes in a working memory task containing encoding, maintenance and retrieval phases. Simulated results have shown that: (1) AMPA channels could produce significant synchronous oscillations in population neurons, which is beneficial to change oscillation patterns in the WMN and DMN. (2) Different NMDA conductance between the networks could generate multiple neural activity modes in the whole network, which may be an important mechanism to switch states of the networks between three different phases of working memory. (3) The number of sequentially memorized stimuli was related to the energy consumption determined by the network''s internal parameters, and the DMN contributed to a more stable working memory process. (4) Finally, this model demonstrated that, in three phases of working memory, different memory phases corresponded to different functional connections between the DMN and WMN. Coupling strengths that measured these functional connections differed in terms of phase synchronization. Phase synchronization characteristics of the contained energy were consistent with the observations of negative and positive correlations between the WMN and DMN reported in referenced fMRI experiments. The results suggested that the coupled interaction between the WMN and DMN played important roles in working memory.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09674-1.  相似文献   

4.
The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.  相似文献   

5.
The hypothesis that synaptic plasticity is a critical component of the neural mechanisms underlying learning and memory is now widely accepted. In this article, we begin by outlining four criteria for evaluating the 'synaptic plasticity and memory (SPM)' hypothesis. We then attempt to lay the foundations for a specific neurobiological theory of hippocampal (HPC) function in which activity-dependent synaptic plasticity, such as long-term potentiation (LTP), plays a key part in the forms of memory mediated by this brain structure. HPC memory can, like other forms of memory, be divided into four processes: encoding, storage, consolidation and retrieval. We argue that synaptic plasticity is critical for the encoding and intermediate storage of memory traces that are automatically recorded in the hippocampus. These traces decay, but are sometimes retained by a process of cellular consolidation. However, we also argue that HPC synaptic plasticity is not involved in memory retrieval, and is unlikely to be involved in systems-level consolidation that depends on HPC-neocortical interactions, although neocortical synaptic plasticity does play a part. The information that has emerged from the worldwide focus on the mechanisms of induction and expression of plasticity at individual synapses has been very valuable in functional studies. Progress towards a comprehensive understanding of memory processing will also depend on the analysis of these synaptic changes within the context of a wider range of systems-level and cellular mechanisms of neuronal transmission and plasticity.  相似文献   

6.
Autobiographical memory refers to events and information about personal life and the self. Within autobiographical memory, many authors make a difference between episodic and semantic components. Study of retrograde amnesia gives information about memory consolidation. According to the "standard model" of consolidation, the medial temporal lobe plays a time-limited role in retrieval memory. Functional neuroanatomy studies of autobiographical memory are very few and many are recent. These studies concern which brain regions are involved in the autobiographical retrieval, episodic or semantic autobiographical memory and consolidation process. Results show that autobiographical retrieval depends on specific brain regions like frontal cortex. Concerning memory consolidation, findings are most consistent with the idea that hippocampal complex is involved in both recent and remote memories.  相似文献   

7.
In general, emotion is known to enhance memory processes. However, the effect of emotion on associative memory and the underling neural mechanisms remains largely unexplored. In this study, we explored brain activation during an associative memory task that involved the encoding and retrieval of word and face pairs. The word and face pairs consisted of either negative or positive words with neutral faces. Significant hippocampal activation was observed during both encoding and retrieval, regardless of whether the word was negative or positive. Negative and positive emotionality differentially affected the hemodynamic responses to encoding and retrieval in the amygdala, with increased responses during encoding negative word and face pairs. Furthermore, activation of the amygdala during encoding of negative word and neutral face pairs was inversely correlated with subsequent memory retrieval. These findings suggest that activation of the amygdala induced by negative emotion during encoding may disrupt associative memory performance.  相似文献   

8.
Dolcos F  LaBar KS  Cabeza R 《Neuron》2004,42(5):855-863
Emotional events are remembered better than neutral events possibly because the amygdala enhances the function of medial temporal lobe (MTL) memory system (modulation hypothesis). Although this hypothesis has been supported by much animal research, evidence from humans has been scarce and indirect. We investigated this issue using event-related fMRI during encoding of emotional and neutral pictures. Memory performance after scanning showed a retention advantage for emotional pictures. Successful encoding activity in the amygdala and MTL memory structures was greater and more strongly correlated for emotional than for neutral pictures. Moreover, a double dissociation was found along the longitudinal axis of the MTL memory system: activity in anterior regions predicted memory for emotional items, whereas activity in posterior regions predicted memory for neutral items. These results provide direct evidence for the modulation hypothesis in humans and reveal a functional specialization within the MTL regarding the effects of emotion on memory formation.  相似文献   

9.
Kumaran D  Maguire EA 《Neuron》2006,49(4):617-629
Sequence disambiguation, the process by which overlapping sequences are kept separate, has been proposed to underlie a wide range of memory capacities supported by the hippocampus, including episodic memory and spatial navigation. We used functional magnetic resonance imaging (fMRI) to explore the dynamic pattern of hippocampal activation during the encoding of sequences of faces. Activation in right posterior hippocampus, only during the encoding of overlapping sequences but not nonoverlapping sequences, was found to correlate robustly with a subject-specific behavioral index of sequence learning. Moreover, our data indicate that hippocampal activation in response to elements common to both sequences in the overlapping sequence pair, may be particularly important for accurate sequence encoding and retrieval. Together, these findings support the conclusion that the human hippocampus is involved in the earliest stage of sequence disambiguation, when memory representations are in the process of being created, and provide empirical support for contemporary computational models of hippocampal function.  相似文献   

10.
Memory retrieval is a fundamental component or stage of memory processing. In fact, retrieval is the only possible measure of memory. The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. Most biological studies of memory using brain lesion and/or gene manipulation techniques cannot distinguish between effects on the molecular mechanisms of the encoding or consolidation of memories and those responsible for their retrieval from storage. Here we examine recent findings indicating the major molecular steps involved in memory retrieval in selected brain regions of the mammalian brain. Together the findings strongly suggest that memory formation and retrieval may share some molecular mechanisms in the hippocampus and that retrieval initiates extinction requiring activation of several signaling cascades and protein synthesis.  相似文献   

11.
Although human gamma activity (30-80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55-65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions.  相似文献   

12.
The neural basis of episodic memory: evidence from functional neuroimaging   总被引:11,自引:0,他引:11  
We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.  相似文献   

13.
We examined anticipatory mechanisms of reward-motivated memory formation using event-related FMRI. In a monetary incentive encoding task, cues signaled high- or low-value reward for memorizing an upcoming scene. When tested 24 hr postscan, subjects were significantly more likely to remember scenes that followed cues for high-value rather than low-value reward. A monetary incentive delay task independently localized regions responsive to reward anticipation. In the encoding task, high-reward cues preceding remembered but not forgotten scenes activated the ventral tegmental area, nucleus accumbens, and hippocampus. Across subjects, greater activation in these regions predicted superior memory performance. Within subject, increased correlation between the hippocampus and ventral tegmental area was associated with enhanced long-term memory for the subsequent scene. These findings demonstrate that brain activation preceding stimulus encoding can predict declarative memory formation. The findings are consistent with the hypothesis that reward motivation promotes memory formation via dopamine release in the hippocampus prior to learning.  相似文献   

14.
Gottfried JA  Smith AP  Rugg MD  Dolan RJ 《Neuron》2004,42(4):687-695
Episodic memory is often imbued with multisensory richness, such that the recall of an event can be endowed with the sights, sounds, and smells of its prior occurrence. While hippocampus and related medial temporal structures are implicated in episodic memory retrieval, the participation of sensory-specific cortex in representing the qualities of an episode is less well established. We combined functional magnetic resonance imaging (fMRI) with a cross-modal paradigm, where objects were presented with odors during memory encoding. We then examined the effect of odor context on neural responses at retrieval when these same objects were presented alone. Primary olfactory (piriform) cortex, as well as anterior hippocampus, was activated during the successful retrieval of old (compared to new) objects. Our findings indicate that sensory features of the original engram are preserved in unimodal olfactory cortex. We suggest that reactivation of memory traces distributed across modality-specific brain areas underpins the sensory qualities of episodic memories.  相似文献   

15.
Attentional orienting and memory are intrinsically bound, but their interaction has rarely been investigated. Here we introduce an experimental paradigm using naturalistic scenes to investigate how long-term memory can guide spatial attention and thereby enhance identification of events in the perceptual domain. In the task, stable memories of objects embedded within complex scenes guide spatial orienting. We compared the behavioral effects and neural systems of memory-guided orienting with those in a more traditional attention-orienting task in which transient spatial cues guide attention. Memory-guided attention operated within surprisingly short intervals and conferred reliable and sizeable advantages for detection of objects embedded in scenes. Event-related functional magnetic resonance imaging showed that memory-guided attention involves the interaction between brain areas participating in retrieval of memories for spatial context with the parietal-frontal network for visual spatial orienting. Activity in the hippocampus was specifically engaged in memory-guided spatial attention and correlated with the ensuing behavioral advantage.  相似文献   

16.
One-shot memory in hippocampal CA3 networks   总被引:2,自引:0,他引:2  
Moser EI  Moser MB 《Neuron》2003,38(2):147-148
The hippocampus plays a crucial role in the encoding and retrieval of episodic memory. In this issue of Neuron, Nakazawa and coworkers show that synaptic modification in hippocampal CA3 neurons is critical for immediate storage of information, a key feature of episodic memory.  相似文献   

17.
Interactions between attention and memory   总被引:4,自引:0,他引:4  
Attention and memory cannot operate without each other. In this review, we discuss two lines of recent evidence that support this interdependence. First, memory has a limited capacity, and thus attention determines what will be encoded. Division of attention during encoding prevents the formation of conscious memories, although the role of attention in formation of unconscious memories is more complex. Such memories can be encoded even when there is another concurrent task, but the stimuli that are to be encoded must be selected from among other competing stimuli. Second, memory from past experience guides what should be attended. Brain areas that are important for memory, such as the hippocampus and medial temporal lobe structures, are recruited in attention tasks, and memory directly affects frontal-parietal networks involved in spatial orienting. Thus, exploring the interactions between attention and memory can provide new insights into these fundamental topics of cognitive neuroscience.  相似文献   

18.
Place cells, spatial maps and the population code for memory   总被引:8,自引:0,他引:8  
The study of population dynamics in hippocampal place cells has emerged as one of the most powerful tools for understanding the encoding, storage and retrieval of declarative memory. Recent work has laid out the contours of an attractor-based hippocampal population code for memory in recurrent circuits of the hippocampus. The code is based on inputs from a topographically organized, path-integration-dependent spatial map that lies upstream in the medial entorhinal cortex. The recurrent networks of the hippocampal formation enable these spatial inputs to be synthesized with nonspatial event-related information.  相似文献   

19.
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow‐wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow‐oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high‐order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow‐oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp‐wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7–14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow‐oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow‐oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region—the caudolateral nidopallium (NCL)—involved in performing high‐order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra‐hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow‐oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow‐oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups.  相似文献   

20.
Cognitive neuroscience of emotional memory   总被引:11,自引:0,他引:11  
Emotional events often attain a privileged status in memory. Cognitive neuroscientists have begun to elucidate the psychological and neural mechanisms underlying emotional retention advantages in the human brain. The amygdala is a brain structure that directly mediates aspects of emotional learning and facilitates memory operations in other regions, including the hippocampus and prefrontal cortex. Emotion-memory interactions occur at various stages of information processing, from the initial encoding and consolidation of memory traces to their long-term retrieval. Recent advances are revealing new insights into the reactivation of latent emotional associations and the recollection of personal episodes from the remote past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号