首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell Ig and ITIM domain (TIGIT) is a newly identified receptor expressed on T cells that binds to CD155 on the dendritic cell surface, driving them to a more tolerogenic phenotype. Given that TIGIT contains an ITIM motif in its intracellular domain and considering the potential importance of the TIGIT/CD226 pathway in human autoimmune disease, we investigated the specific role of TIGIT in human CD4(+) T cells. Using an agonistic anti-TIGIT mAb, we demonstrate a direct inhibitory effect on T cell proliferation with a decrease in expression of T-bet, GATA3, IFN regulatory factor 4, and retinoic acid-related orphan receptor c with inhibition of cytokine production, predominantly IFN-γ. Knockdown of TIGIT expression by short hairpin RNA resulted in an increase of both T-bet and IFN-γ mRNA and protein expression with concomitant decrease in IL-10 expression. Increases in IFN-γ with TIGIT knockdown could be overcome by blocking CD226 signaling, indicating that TIGIT exerts immunosuppressive effects by competing with CD226 for the same CD155 ligand. These data demonstrate that TIGIT can inhibit T cell functions by competing with CD226 and can also directly inhibit T cells in a T cell-intrinsic manner. Our results provide evidence for a novel role of this alternative costimulatory pathway in regulating human T cell responses associated with autoimmune disease.  相似文献   

2.

Objective

Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis.

Methods and Results

TIGIT was upregulated on CD4+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr−/− mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production.

Conclusions

Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.  相似文献   

3.
STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating T(H)17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including T(H)17 T cell differentiation and cytokine production, as well as induction of RORgamma t and the IL-23R. Neither naturally occurring T(H)17 cells nor T(H)17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased T(H)1 responses, indicating that STAT3 signaling skews T(H) responses away from the T(H)1 pathway and toward the T(H)17 pathway. Thus, STAT3 is a candidate target for T(H)17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.  相似文献   

4.
The engagement of CD137 (4-1BB), an inducible T cell costimulatory receptor and member of the TNF receptor superfamily, by agonistic Abs can promote strong tumor and viral immunity mediated by CD8(+) T cells and stimulate IFN-gamma production. However, its role in Th2-mediated immune responses has not been well defined. To address this issue, we studied the function of CD137 engagement using an allergic airway disease model in which the mice were sensitized with inactivated Schistosoma mansoni eggs followed by S. mansoni egg Ag challenge directly in the airways and Th1/2 cytokine production was monitored. Interestingly, treatment of C57BL/6 mice with agonistic anti-CD137 (2A) during sensitization completely prevents allergic airway inflammation, as shown by a clear inhibition of T cell and eosinophil infiltration into the lung tissue and airways, accompanied by diminished Th2 cytokine production and reduced serum IgE levels, as well as a reduction of airway hyperresponsiveness. At various time points after immunization, restimulated splenocytes from 2A-treated mice displayed reduced proliferation and Th2 cytokine production. In accordance with this, agonistic Ab to CD137 can directly coinhibit Th2 responses in vitro although it costimulates Th1 responses. CD137-mediated suppression of Th2 response is independent of IFN-gamma and T regulatory cells. Our study has identified a novel pathway to inhibit Th2 responses in a CD137-dependent fashion.  相似文献   

5.
IL-4 suppression of in vivo T cell activation and antibody production   总被引:3,自引:0,他引:3  
Injection of mice with a foreign anti-IgD Ab stimulates B and T cell activation that results in large cytokine and Ab responses. Because most anti-IgD-activated B cells die before they can be stimulated by activated T cells, and because IL-4 prolongs the survival of B cells cultured with anti-Ig, we hypothesized that treatment with IL-4 at the time of anti-IgD Ab injection would decrease B cell death and enhance anti-IgD-induced Ab responses. Instead, IL-4 treatment before or along with anti-IgD Ab suppressed IgE and IgG1 responses, whereas IL-4 injected after anti-IgD enhanced IgE responses. The suppressive effect of early IL-4 treatment on the Ab response to anti-IgD was associated with a rapid, short-lived increase in IFN-gamma gene expression but decreased CD4+ T cell activation and decreased or delayed T cell production of other cytokines. We examined the possibilities that IL-4 stimulation of IFN-gamma production, suppression of IL-1 or IL-2 production, or induction of TNF-alpha or Fas-mediated apoptosis could account for IL-4's suppressive effect. The suppressive effect of IL-4 was not reversed by IL-1, IL-2, or anti-TNF-alpha or anti-IFN-gamma mAb treatment, or mimicked by treatment with anti-IL-2Ralpha (CD25) and anti-IL-2Rbeta (CD122) mAbs. Early IL-4 treatment failed to inhibit anti-IgD-induced Ab production in Fas-defective lpr mice; however, the poor responsiveness of lpr mice to anti-IgD made this result difficult to interpret. These observations indicate that exposure to IL-4, while T cells are first being activated by Ag presentation, can inhibit T cells activation or promote deletion of responding CD4+ T cells.  相似文献   

6.
Triggering of 4-1BB, a member of the TNFR family, through in vivo administration of agonistic anti-4-1BB Ab delivers a powerful costimulatory signal to CTL. We found this signal to effectively replace the need for CD4(+) T cell help in the cross-priming of tumor-specific CTL immunity. Furthermore, 4-1BB Ab can convert an otherwise tolerogenic peptide vaccine into a formulation capable of efficient CTL priming. Initial activation of naive CTL can occur in the absence of 4-1BB costimulation, but this signal permits increased survival of Ag-stimulated CTL. Because naive CTL do not express 4-1BB at their surface, susceptibility to 4-1BB triggering depends on prior up-regulation of this receptor. We show that this requires both stimulation of the TCR and CD28-dependent costimulation. Accordingly, blockade of the CD28-costimulatory pathway abrogates the capacity of agonistic anti-4-1BB Ab to trigger Th-independent CTL immunity. In conclusion, our data reveal that the 4-1BB-mediated survival signal is positioned downstream of Ag-specific TCR triggering and CD28-dependent costimulation of naive CTL. The powerful effects of 4-1BB triggering on the induction, amplification, and persistence of CTL responses provide a novel strategy for increasing the potency of vaccines against cancers.  相似文献   

7.
The programmed death-1 (PD-1)/programmed death-1 ligand 1 (PD-L1) pathway regulates both stimulatory and inhibitory signals. In some conditions, PD-1/PD-L1 inhibits T and B cell activation, induces anergy, and reduces cytotoxicity in CD8(+) T cells. In other conditions, PD-l/PD-L1 has costimulatory effects on T cells. We recently showed that induction of suppressive CD8(+)Foxp3(+) T cells by immune tolerance of lupus-prone (New Zealand black × New Zealand white)F(1) (BWF(1)) mice with the anti-DNA Ig-based peptide pConsensus (pCons) is associated with significantly reduced PD-1 expression on those cells. In this study, we tested directly the role of PD-1 by administering in vivo neutralizing Ab to PD-1 to premorbid BWF(1) and healthy control mice. Anti-PD-1-treated mice were protected from the onset of lupus nephritis for 10 wk, with significantly improved survival. Although the numbers of T cells declined in aging control mice, they were maintained in anti-PD-1-treated mice, including CD8(+)Foxp3(+) T cells that suppressed syngeneic CD4(+)CD25(-) T cell proliferation and IFN-γ production, reduced production of IgG and anti-dsDNA IgG, induced apoptosis in syngeneic B cells, and increased IL-2 and TGF-β production. The administration of anti-PD-1 Ab to BWF(1) mice after induction of tolerance with pCons abrogated tolerance; mice developed autoantibodies and nephritis at the same time as control mice, being unable to induce CD8(+)Foxp3(+) T suppressor cells. These data suggest that tightly regulated PD-1 expression is essential for the maintenance of immune tolerance mediated by those CD8(+)Foxp3(+) T cells that suppress both T(h) cells and pathogenic B cells. PD-1 regulation could represent a target to preserve tolerance and prevent autoimmunity.  相似文献   

8.
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFNαR) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFNαR dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.  相似文献   

9.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

10.
We have demonstrated previously that the administration of CTLA-4 blockade has mediated objective cancer regression and autoimmunity in patients with metastatic melanoma. To explore the mechanism of these in vivo effects, we have studied the changes in lymphocyte phenotype and function in patients receiving anti-CTLA-4 Ab (MDX-010). Patients with stage IV melanoma or renal cell cancer were treated every 3 wk with an anti-CTLA-4 Ab with or without peptide immunization. Pheresis samples were analyzed using flow cytometry to determine lymphocyte cell surface markers. Gene expression analyses and proliferation assays were conducted on purified T cell subsets. Anti-CTLA-4 Ab did not inhibit the suppressive activity of CD4+CD25+ cells in vitro or in vivo. In addition, there was no decrease in the expression of CD4+CD25+ cells in whole PBMC, nor a decrease in Foxp3 gene expression in the CD4+ or CD4+CD25+ purified cell populations posttreatment. The percentage of CD4+, CD8+, CD4+CD25+, and CD4+CD25- T cells in PBMC expressing the activation marker HLA-DR increased following anti-CTLA-4 Ab administration. Therefore, our results suggest that the antitumor effects of CTLA-4 blockade are due to increased T cell activation rather than inhibition or depletion of T regulatory cells.  相似文献   

11.
12.
Ligation of CD40 induces maturation of dendritic cells (DC) and could be a useful target for vaccines. In this study, we have constructed two types of Ab-based vaccine constructs that target mouse CD40. One type is a recombinant Ab with V regions specific for CD40 and has defined T cell epitopes inserted into its C region. The other type is a homodimer, each chain of which is composed of a targeting unit (single-chain fragment variable targeting CD40), a dimerization motif, and an antigenic unit. Such proteins bound CD40, stimulated maturation of DC, and enhanced primary and memory T cell responses. When delivered i.m. as naked DNA followed by electroporation, the vaccines induced T cell responses against MHC class II-restricted epitopes, Ab responses, and protection in two tumor models (myeloma and lymphoma). Two factors apparently contributed to these results: 1) agonistic ligation of CD40 and induction of DC maturation, and 2) delivery of Ag to APC and presentation on MHC class II molecules. These results highlight the importance of agonistic targeting of Ag to CD40 for induction of long-lasting and protective immune responses.  相似文献   

13.
CD40 is thought to play a central role in T cell-dependent humoral responses through two distinct mechanisms. CD4+ T helper cells are activated via CD40-dependent Ag presentation in which CD80/CD86 provides costimulation through CD28. In addition, engagement of CD40 on B cells provides a direct pathway for activation of humoral responses. We used a model of adenovirus-mediated gene transfer of beta-galactosidase (lacZ) into murine lung to evaluate the specific CD40-dependent pathways required for humoral immunity at mucosal surfaces of the lung. Animals deficient in CD40L failed to develop T and B cell responses to vector. Activation of Th2 cells, which normally requires CD40-dependent stimulation of APCs, was selectively reconstituted in CD40 ligand-deficient mice by systemic administration of an Ab that is agonistic to CD28. Surprisingly, this resulted in the development of a functional humoral response to vector as evidenced by formation of germinal centers and production of antiadenovirus IgG1 and IgA that neutralized and prevented effective readministration of vector. The CD28-dependent B cell response required CD4+ T cells and was mediated via IL-4. These studies indicate that CD40 signals to the B cells are not necessary for CD4+ Th2 cell-dependent humoral responses to be generated.  相似文献   

14.
Many individuals develop a single or a few brief episodes of autoimmunity from which they recover. Mechanisms that quell pathologic autoimmunity following such a breakdown of self-tolerance are not clearly understood. In this study, we show that in nonautoimmune mice, dsDNA-specific autoreactive B cells exist but remain inactive. This state of inactivation in dsDNA-specific B cells could be disrupted by autoreactive Th cells; in this case T cells that react with peptides from the V(H) region of anti-DNA Abs (hereafter called anti-V(H) T cells). Immunization with anti-DNA mAb, its gamma-chain or peptides derived from its V(H) region induced anti-V(H) Th cells, IgG anti-dsDNA Ab, and proteinuria. The breakdown of B cell tolerance in nonautoimmune mice, however, was short-lived: anti-DNA Ab and nephritis subsided despite subsequent immunizations. The recovery from autoimmunity temporally correlated with the appearance of T cells that inhibited anti-DNA Ab production. Such inhibitory T cells secreted TGFbeta; the inhibition of anti-DNA Ab production by these cells was partly abolished by anti-TGFbeta Ab. Even without immunization, nonautoimmune mice possess T cells that can inhibit autoantibody production. Thus, inhibitory T cells in nonautoimmune mice may normally inhibit T-dependent activation of autoreactive B cells and/or reverse such activation following stimulation by Th cells. The induction of such inhibitory T cells may play a role in protecting nonautoimmune mice from developing chronic autoimmunity.  相似文献   

15.
It is acknowledged that T cell interactions with mature dendritic cells (DC) lead to immunity, whereas interactions with immature DC lead to tolerance induction. Using a transgenic murine system, we have examined how DC expressing self-peptides control naive, self-reactive CD8+ T cell responses in vitro and in vivo. We have shown, for the first time, that immature DC can also stimulate productive activation of naive self-specific CD8+ T cells, which results in extensive proliferation, the expression of a highly activated cell surface phenotype, and differentiation into autoimmune CTL. Conversely, mature DC can induce abortive activation of naive CD8+ T cells, which is characterized by low-level proliferation, the expression of a partially activated cell surface phenotype which does not result in autoimmune CTL. Critically, both CD8+ T cell responses are determined by a combination of signals mediated by the DC, and that altering any one of these signals dramatically shifts the balance between autoimmunity and self-tolerance induction. We hypothesize that DC maintain the steady state of self-tolerance among self-specific CD8+ T cells in an active and dynamic manner, licensing productive immune responses against self-tissues only when required.  相似文献   

16.
4-1BB, a member of the TNFR superfamily, is a costimulatory receptor primarily expressed on activated T cells. It has been shown that the administration of agonistic anti-4-1BB Abs enhances tumor immunity and allogenic immune responses. Paradoxically, we found that the administration of an agonistic anti-4-1BB mAb (2A) dramatically reduced the incidence and severity of experimental autoimmune encephalomyelitis (EAE). Adoptive transfer of T cells from such treated mice failed to induce EAE, whereas anti-4-1BB treatment following adoptive transfer of encephalitogenic T cells did not prevent EAE pathogenesis. These results suggest that anti-4-1BB treatment during the induction phase inhibits autoreactive T cell immune responses rather than preventing T cell trafficking into the CNS. This was substantiated by the observations that draining lymph node cells from anti-4-1BB-treated mice failed to respond to Ag stimulation in vitro. In addition, we found that such treatment initially promotes the activation and proliferation of Ag-specific CD4+ T cells but subsequently increases their probability of undergoing activation-induced cell death, thereby inhibiting effector T cell responses. More importantly, 2A treatment also inhibits the relapse of EAE in a clinically relevant murine model of multiple sclerosis. This study indicates that the agonistic Ab against 4-1BB can potentially be used as a novel immunotherapeutic agent for treating autoimmune diseases.  相似文献   

17.
18.
Presentation of Ag to T lymphocytes in the absence of the requisite costimulatory signals leads to an Ag-specific unresponsiveness termed anergy, whereas Ag presentation in conjunction with costimulation leads to clonal expansion. B7/CD28 signaling has been shown to provide this critical costimulatory signal and blockade of this pathway may inhibit in vitro and in vivo immune responses. Although T cells from CD28-deficient mice are lacking in a variety of responses, they nonetheless are capable of various primary and secondary responses without the induction of anergy expected in the absence of costimulation. This suggests that there may be alternative costimulatory pathways that can replace CD28 signaling under certain circumstances. In this paper, we show that ICAM-1becomes a dominant costimulatory molecule for CD28-deficient T cells. ICAM-1 costimulates anti-CD3-mediated T cell proliferation and IL-2 secretion in CD28-deficient murine T cells. Furthermore, splenocytes from ICAM-1-deficient mice could not activate CD28-deficient T cells and splenocytes lacking both ICAM and CD28 fail to proliferate in response to anti-CD3-induced T cell signals. This confirms that not only can ICAM-1 act as a CD28-independent costimulator, but it is the dominant, requisite costimulatory molecule for the activation of T cells in the absence of B7/CD28 costimulation.  相似文献   

19.
T cell activation signals induced by altered peptide ligands (APLs) are different from those induced by the original agonistic peptide. The characteristics of the former are partial phosphorylation of TCR-zeta and no tyrosine-phosphorylation of zeta-associated protein-70 (ZAP-70). To analyze further those signaling pathways, we introduced a dominant negative (DN) form of ZAP-70 into a human CD4(+) T cell clone in which fully and partially agonistic peptide ligands have been well characterized. We found that some over-expressed partially agonistic ligands (OPALs) induced T cell responses without tyrosine-phosphorylation and kinase activation of ZAP-70. However, those responses were inhibited in T cells expressing DN ZAP-70, which could associate with partially phosphorylated TCR-zeta. In OPAL-stimulated T cells, PLC-gamma1 was phosphorylated and it was suppressed by DN ZAP-70 expression, suggesting that the ZAP-70-TCR-zeta association mediates the activation of PLC-gamma1 leading to T cell responses even in the absence of kinase activation of ZAP-70.  相似文献   

20.
T cell activation can be profoundly altered by coinhibitory and costimulatory molecules. B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory Ig superfamily cell surface protein found on lymphocytes and APC. In this study we analyze the effects of an agonistic anti-BTLA mAb, PK18, on TCR-mediated T cell activation. Unlike many other allele-specific anti-BTLA mAb we have generated, PK18 inhibits anti-CD3-mediated CD4+ T cell proliferation. This inhibition is not dependent on regulatory T cells, nor does the Ab induce apoptosis. Inhibition of T cell proliferation correlates with a profound reduction in IL-2 secretion, although this is not the sole cause of the block of cell proliferation. In contrast, PK18 has no effect on induction of the early activation marker CD69. PK18 also significantly inhibits, but does not ablate, IL-2 secretion in the presence of costimulation as well as reduces T cell proliferation under limiting conditions of activation in the presence of costimulation. Similarly, PK18 inhibits Ag-specific T cell responses in culture. Interestingly, PK18 is capable of delivering an inhibitory signal as late as 16 h after the initiation of T cell activation. CD8+ T cells are significantly less sensitive to the inhibitory effects of PK18. Overall, BTLA adds to the growing list of cell surface proteins that are potential targets to down-modulate T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号