共查询到20条相似文献,搜索用时 0 毫秒
1.
Busch JW 《American journal of botany》2005,92(9):1503-1512
Self-compatibility and adaptations to self-fertilization are often found in plant populations at the periphery of species' ranges or on islands. Self-compatibility may predominate in these environments because it provides reproductive assurance when pollinators or availability of mates limits seed production. This possibility was studied in Leavenworthia alabamica, a flowering plant endemic to the southeastern United States. Populations at the center of the species' range retain sporophytic self-incompatibility, but peripheral populations are smaller, self-compatible, and have adaptations for self-fertilization. A reciprocal-transplant experiment was designed to test whether there is pollen limitation of seed set and to examine its strength in central and peripheral populations. Self-compatible genotypes produced more fruit and 17-22% more seed than self-incompatible genotypes in all environments, suggesting that the transition to self-compatibility may be favored by natural selection in all populations inhabited by L. alabamica. Sequence analyses demonstrated that two peripheral populations have 90-100% reductions in genetic variation, consistent with the effects of small population size or historical bottlenecks. Although pollen limitation of seed set occurs in all environments, self-compatibility may evolve at the periphery in L. alabamica because the benefits of reproductive assurance are influenced by population size or bottlenecks following extinction and colonization. 相似文献
2.
Busch JW 《Heredity》2005,94(2):159-165
Inbreeding depression is one of the leading factors preventing the evolution of self-fertilization in plants. In populations where self-fertilization evolves, theory suggests that natural selection against partially recessive deleterious alleles will reduce inbreeding depression. The purpose of this study was to evaluate this hypothesis by comparing the magnitude of inbreeding depression in self-incompatible and self-compatible populations of Leavenworthia alabamica. Within-population crosses were conducted to compare the quantity and quality of offspring produced by outcrossing and self-fertilization. These progeny were grown in a common greenhouse and inbreeding depression was measured in germination, survival, biomass, transition rate to flowering, flower number, petal length, pollen grains/anther, pollen viability, and ovule number. In comparison to outcrossing, self-fertilization led to the production of fewer and smaller seeds within self-incompatible populations. Moreover, inbreeding depression was observed in eight of 11 offspring traits within self-incompatible populations of L. alabamica. In contrast, there was significant inbreeding depression only in flower number within self-compatible populations. The results of this study are consistent with the idea that self-fertilization selectively removes partially recessive deleterious alleles causing inbreeding depression in natural plant populations. However, in plant species such as L. alabamica where self-compatibility may evolve in small populations following long-distance dispersal, declines in inbreeding depression may also be facilitated by genetic drift. 相似文献
3.
? Premise of the study: A mixture of outcrossing and selfing is often observed in plant populations. Although mixed mating is ubiquitous, it has several potential evolutionary explanations. Mixed mating may be actively maintained by selection, passively determined by the pollination environment, or a transitional stage during the evolution of self-fertilization. ? Methods: We studied patterns of self-compatibility and selfing rates in a population of Leavenworthia alabamica that recently lost self-incompatibility. We also experimentally tested whether natural selection against selfing at the pre- or postzygotic stage is sufficient to explain mixed mating in this population. ? Key results: Visualizing pollen tube growth following self-pollination, we found that nearly all plants were fully self-compatible. Progeny array analysis revealed that the average selfing rate of the population was s = 0.523. The inbreeding coefficient in the parents (F = 0.539) exceeded the amount expected if the selfing rate (s) were constant [F(eq) = s/(2 - s)], indicating either population subdivision or higher selfing rates in the past. Inference of family-level selfing rates revealed substantial variation. Experiments found that self and outcross pollen fertilized nearly equal numbers of ovules in competition. Comparison of seed production following self- or cross-pollination failed to implicate early acting inbreeding depression as a factor maintaining mixed mating. ? Conclusions: The results of our experiments suggest that mixed mating is not maintained by selection against self-pollen or zygotes in this population. Mixed mating is most likely a byproduct of the pollination process but may also be a transitional stage during the evolution of higher selfing rates. 相似文献
4.
5.
6.
The reproductive assurance hypothesis emphasizes that self-fertilization should evolve in species with reduced dispersal capability, low population size or experiencing recurrent bottlenecks. Our work investigates the ecological components of the habitats colonized by the snail, Galba truncatula, that may influence the evolution of selfing. Galba truncatula is a preferential selfer inhabiting freshwater habitats, which vary with respect to the degree of permanence. We considered with a population genetic approach the spatial and the temporal degree of isolation of populations of G. truncatula. We showed that patches at distances of only a few meters are highly structured. The effective population sizes appear quite low, in the order of 10 individuals or less. This study indicates that individuals of the species G. truncatula are likely to be alone in a site and have a low probability of finding a partner from a nearby site to reproduce. These results emphasize the advantage of selfing in this species. 相似文献
7.
8.
Pollen discounting and the evolution of selfing in Arenaria uniflora (caryophyllaceae) 总被引:1,自引:0,他引:1
Fishman L 《Evolution; international journal of organic evolution》2000,54(5):1558-1565
Although most models of mating system evolution assign a central role to the male transmission advantage of selfing genotypes, empirical data on the male fitness consequences of increased self-pollination are still uncommon. Here, I use measures of pollen import and export by focal plants in genotyped arrays to investigate the effects of floral morphology and pollination environment on self and outcross male function. Plants from an autogamous population of Arenaria uniflora (Caryophyllaceae) exhibit complete pollen discounting relative to closely related outcrossers, as do morphologically intermediate F1 hybrids between the two populations. However, the low cumulative male fitness of hybrids probably results from reduced pollen number or competitive ability, rather than a nonlinear relationship with floral morphology. When surrounded by selfers, plants from the outcrosser population self-fertilize at nearly the same rate as selfers (>80%), but have much lower self male fitness due to reduced fruit set. Because outcross siring success is also extremely low (<8%) in this treatment, these mate-limited outcrossers are at male fitness disadvantage to both pseudocleistogamous selfers and nonlimited outcrossers. The relative male fitness of plants with different mating systems appears dependent on the ecological context, as well as on morphological trade-offs. 相似文献
9.
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity to test for the effects of mode of reproduction on patterns of molecular evolution on a genomic scale. Here we contrast rates of nucleotide substitution and codon usage bias among thousands of orthologous groups of genes in six species of Caenorhabditis, including the classic model organism Caenorhabditis elegans. Despite evidence that weak selection on synonymous codon usage is pervasive in the history of all species in this genus, we find little difference among species in the patterns of codon usage bias and in replacement-site substitution. Applying a model of relaxed selection on codon usage to the C. elegans and C. briggsae lineages suggests that self-fertilization is unlikely to have evolved more than approximately 4 million years ago, which is less than a quarter of the time since they shared a common ancestor with outcrossing species. We conclude that the profound changes in mating behavior, physiology, and developmental mechanisms that accompanied the transition from an obligately outcrossing to a primarily selfing mode of reproduction evolved in the not-too-distant past. 相似文献
10.
Among the multitude of methods available for the study of origin and evolution of various life forms on Earth, the phylogenetic approach, i.e. the delineation of natural genetic relatedness amongst different groups of organisms, has been of particular interest to evolutionary biologists. An approach towards analysing phylogeny is the comparison of genome sequences of extant organisms by a variety of computational techniques. These studies rely mostly on the similarity or dissimilarity in global character of the genome in terms of sequence, without any consideration to its structure. In this work, we report a potentially new methodology towards elucidation of molecular phylogeny. The approach considers a structural parameter of the genome, namely its flexibility, and uses it to compare the small subunit ribosomal ribonucleic acid (SSU rRNA) gene from a cross-section of species. We find that the flexibility pattern of the genome is strikingly similar in organisms that are closer in evolutionary distance than the ones that are separated. This method of comparison thus might be utilised in constructing phylogenetic trees from flexibility patterns derived from nucleotide sequence. 相似文献
11.
Leavenworthia crassa is a rosette flowering species that differs from inflorescence flowering species, such as Arabidopsis thaliana, in having elongated pedicels and shortened interfloral internodes on the main axis. Based on previous experiments, we hypothesized that changes to the L. crassa TFL1 ortholog, LcrTFL1, were important in the evolution of rosette flowering. We isolated LcrTFL1 and introduced a genomic construct into tfl1 mutant A. thaliana plants. We also generated and analyzed EGFP-LcrTFL1 reporter-fusion lines, and LcrTFL1/LcrLFY doubly transgenic lines. The transgene rescued the mutant defects, but manifested gain-of-function phenotypes. However, LcrTFL1 lines differed from 35S:TFL1 lines in several regards. Defects in floral meristem identity establishment were observed, as was the production of flowers with extra petals. We also noted features that resemble rosette flowering: LcrTFL1 lines produced significantly shorter interfloral internodes and significantly longer pedicels than either wild-type or 35S:TFL1 plants. Our data show that there are substantive differences in the regulation and/or function of TFL1 orthologs between A. thaliana and L. crassa. These may reflect changes that occurred during the evolution of rosette flowering in Leavenworthia, but, if so, our results show that additional, as-yet-unidentified genes were involved in this instance of architectural evolution. 相似文献
12.
Sicard A Stacey N Hermann K Dessoly J Neuffer B Bäurle I Lenhard M 《The Plant cell》2011,23(9):3156-3171
The change from outbreeding to selfing is one of the most frequent evolutionary transitions in flowering plants. It is often accompanied by characteristic morphological and functional changes to the flowers (the selfing syndrome), including reduced flower size and opening. Little is known about the developmental and genetic basis of the selfing syndrome, as well as its adaptive significance. Here, we address these issues using the two closely related species Capsella grandiflora (the ancestral outbreeder) and red shepherd's purse (Capsella rubella, the derived selfer). In C. rubella, petal size has been decreased by shortening the period of proliferative growth. Using interspecific recombinant inbred lines, we show that differences in petal size and flower opening between the two species each have a complex genetic basis involving allelic differences at multiple loci. An intraspecific cross within C. rubella suggests that flower size and opening have been decreased in the C. rubella lineage before its extensive geographical spread. Lastly, by generating plants that likely resemble the earliest ancestors of the C. rubella lineage, we provide evidence that evolution of the selfing syndrome was at least partly driven by selection for efficient self-pollination. Thus, our studies pave the way for a molecular dissection of selfing-syndrome evolution. 相似文献
13.
Cao Peng Dai Qinlong Deng Cao Zhao Xiang Qin Shishan Yang Jian Ju Ran Wang Zhiwen Lu Guoqing Gu Xiaodong Yang Zhisong Zhu Lifeng 《中国科学:生命科学英文版》2021,64(10):1765-1780
Animal body coverings provide protection and allow for adaptation to environmental pressures such as heat, ultraviolet radiation,water loss, and mechanical forces. Here, using a comparative genomics analysis of 39 mammal species spanning three skin covering types(hairless, scaly and spiny), we found some genes(e.g., UVRAG, POLH, and XPC) involved in skin inflammation,skin innate immunity, and ultraviolet radiation damage repair were under selection in hairless ocean mammals(e.g., whales and manatees). These signatures might be associated with a high risk of skin diseases from pathogens and ultraviolet radiation.Moreover, the genomes from three spiny mammal species shared convergent genomic regions(EPHB2, EPHA4, and NIN) and unique positively selected genes(FZD6, INVS, and CDC42) involved in skin cell polarity, which might be related to the development of spines. In scaly mammals, the shared convergent genomic regions(e.g., FREM2) were associated with the integrity of the skin epithelium and epidermal adhesion. This study identifies potential convergent genomic features among distantly related mammals with the same skin covering type. 相似文献
14.
G. Matallana M. A. S. Godinho F. A. G. Guilherme M. Belisario T. S. Coser Tânia Wendt 《Plant Systematics and Evolution》2010,289(1-2):57-65
Co-occurring congener plant species in the highly diverse Atlantic forests of southeastern Brazil may act as natural laboratories for evaluating evolution of reproductive shifts. We assessed the breeding systems in a sympatric assemblage of bromeliad species and compiled literature available for the family to compare our experiments with available information. We performed controlled experiments of autonomous selfing, self- and cross-pollination in 40 species of 11 genera of two subfamilies that, in general, overlap their blooming period and share the same pollination vectors. We also tested for differences between self-compatible (SC) and self-incompatible (SI) species with regard to ecological factors such as abundance, co-flowering and co-occurrence. Most species experimentally tested and surveyed in the literature (75%) were SC. Species from the subfamily Tillandsioideae were predominantly SC, while Bromelioideae showed greater variation in breeding systems. About 43% of the species studied set fruits spontaneously in the absence of pollinator vectors. We found that SC species were the more abundant, were more frequently associated with other relatives and overlapped their blooming period with other species more than SI species. Thus, our results suggest that self-compatibility is common for Bromeliaceae and do not support the traditional hypothesis of reproductive assurance used to explain the evolution of selfing. We discuss self-compatibility as a reproductive isolating mechanism in the presence of pollen flow among sympatric congener species. 相似文献
15.
Recent studies point to contact and possible admixture among contemporaneous hominin species during the Plio-Pleistocene. However, detection of hybridization in fossils-and especially fossil hominins-is contentious, and it is hindered in large part by our lack of understanding about how morphological hybridity is manifested in the primate skeleton. Here, we report on a study of known-pedigree, purebred yellow and olive baboons (n = 112) and their hybrids (n = 57), derived from the baboon colony of the Southwest Foundation for Biomedical Research. The hybrids were analyzed in two different groups: (1) F1 = olive x yellow first-generation hybrids; (2) B1 = olive x F1 backcross hybrids. Thirty-nine metric variables were tested for heterosis and dysgenesis. Nonmetric data were also collected from the crania. Results show that these primate hybrids are somewhat heterotic relative to their parental populations, are highly variable, and display novel phenotypes. These effects are most evident in the dentition and probably indicate the mixing of two separately coadapted genomes and the breakdown in the coordination of early development, despite the fact that these populations diverged fairly recently. Similar variation is also observed in museum samples drawn from natural hybrid zones. The results offer a strategy for detecting hybrid zones in the fossil record; implications for interpreting the hominin fossil record are discussed. 相似文献
16.
Although often considered as evolutionary dead ends, selfing taxa may make an important contribution to plant evolution through hybridization with related outcrossing lineages. However, there is a shortage of studies examining the evolutionary dynamics of hybridization between outcrossing and selfing taxa. On the basis of differential pollinator attractiveness, production and competitive ability of pollen, as well as levels of inbreeding depression, we predict that the early products of hybridization between outcrossing and selfing lineages will be F1s and first-generation backcrosses sired mainly by the outcrossing lineage, together with selfed F2s containing a limited genetic contribution from the outcrosser. These predictions were tested using amplified fragment length polymorphism and chloroplast markers to analyze the composition of a recent hybrid swarm between predominantly outcrossing Geum rivale and predominantly selfing Geum urbanum. In line with predictions, the hybrid swarm comprised both parental species together with F1s and first-generation backcrosses to G. rivale alone. Chloroplast data suggested that G. rivale was the pollen parent for both observed hybrid classes. However, there was no evidence for F2 individuals, despite the fact that the F1 was fully self-compatible and able to auto-pollinate. The pollen fertility of F1s was only 30% lower than that of the parental taxa, and was fully restored in backcross hybrids. Predicting future evolution in the hybrid swarm will require an understanding of the mating patterns within and among the mix of parental, F1 and backcross genotypes that are currently present. However, these results support the hypothesis that introgression is likely to be asymmetrical from selfing to outcrossing lineages. 相似文献
17.
E. PORCHER J. K. KELLY P.‐O. CHEPTOU C. G. ECKERT M. O. JOHNSTON S. KALISZ 《Journal of evolutionary biology》2009,22(4):708-717
The magnitude of inbreeding depression, a central parameter in the evolution of plant mating systems, can vary depending on environmental conditions. However, the underlying genetic mechanisms causing environmental fluctuations in inbreeding depression, and the consequences of this variation for the evolution of self‐fertilization, have been little studied. Here, we consider temporal fluctuations of the selection coefficient in an explicit genetic model of inbreeding depression. We show that substantial variance in inbreeding depression can be generated at equilibrium by fluctuating selection, although the simulated variance tends to be lower than has been measured in experimental studies. Our simulations also reveal that purging of deleterious mutations does not depend on the variance in their selection coefficient. Finally, an evolutionary analysis shows that, in contrast to previous theoretical approaches, intermediate selfing rates are never evolutionarily stable when the variation in inbreeding depression is due to fluctuations in the selection coefficient on deleterious mutations. 相似文献
18.
The analysis of network evolution has been hampered by limited availability of protein interaction data for different organisms. In this study, we investigate evolutionary mechanisms in Src Homology 3 (SH3) domain and kinase interaction networks using high-resolution specificity profiles. We constructed and examined networks for 23 fungal species ranging from Saccharomyces cerevisiae to Schizosaccharomyces pombe. We quantify rates of different rewiring mechanisms and show that interaction change through binding site evolution is faster than through gene gain or loss. We found that SH3 interactions evolve swiftly, at rates similar to those found in phosphoregulation evolution. Importantly, we show that interaction changes are sufficiently rapid to exhibit saturation phenomena at the observed timescales. Finally, focusing on the SH3 interaction network, we observe extensive clustering of binding sites on target proteins by SH3 domains and a strong correlation between the number of domains that bind a target protein (target in-degree) and interaction conservation. The relationship between in-degree and interaction conservation is driven by two different effects, namely the number of clusters that correspond to interaction interfaces and the number of domains that bind to each cluster leads to sequence specific conservation, which in turn results in interaction conservation. In summary, we uncover several network evolution mechanisms likely to generalize across peptide recognition modules. 相似文献
19.
Plant reproductive systems present a gradient of gender ranging from unisexuality to hermaphrodism. This variability in sex expression can be found within species and has been found to be influenced by external factors such as resource levels. The sexual strategy selected will depend not only on the number of pollen grains and seeds an individual can produce but also on the chance of success of this production. Production depends on trade-offs between female and male functions of hermaphrodites according to resource level and subsequent fate is influenced by selfing, inbreeding depression and competition among offspring. The goal of this study is to determine how interactions between these key parameters, resources availability, selfing and density-dependent competition within offspring influence the evolution of reproductive systems. We showed with a theoretical approach that (i) a change in resource level at the population level affects sexual strategies only in certain conditions; (ii) density-dependent seedling mortality disadvantages females compared to hermaphrodites and interacts strongly with resource level. 相似文献