首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The composting of olive press cake (OPC) repeatedly mixed either with olive mill wastewater (OPC+OMW) or with tap water (OPC+W) was studied using the thermogradient respirometer, an apparatus that determines the respiration rates from a substrate over a wide range of different temperatures (respiratory profile). The composting processes took place over a period of five months during which nine moistenings of the OPC were performed with the respective liquids. The composting resulted in detoxification of the materials used in both treatments, as indicated by seed germination tests. However, the repeated applications of OMW resulted in recurring thermophilic phases (following each application) and in greater pH and conductivity increases in the final product, as compared to water applications. Respiration measurements performed at 35 degrees C were good indicators of the mean metabolic potential in the compost piles (the mean respiration derived from the whole respiration profile over a wide range of environmental temperatures). However, respiration measurements at higher temperatures (48.5 degrees C) were better indicators of the respiration activity occurring in situ. Following the initial thermophilic phase, the respiration potential of the composts at high temperatures (42-63 degrees C) increased drastically compared to their respiration potential at lower temperatures (17-42 degrees C) indicating the establishment of a thermophilic microflora. Subsequently, only the periodic new substrate-C applications in the form of OMW resulted in increased ratios of low temperature-to-high temperature respiration potential. These ratios decreased again following the respective thermophilic phase that each new OMW application had induced.  相似文献   

2.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25 degrees C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

3.
Ash in composting of source-separated catering waste   总被引:5,自引:0,他引:5  
Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had also other beneficial effects on composting it improved the availability of oxygen in compost mass during the drum composting phase and reduced the formation of odorous gases, especially H2S.  相似文献   

4.
Co-composting of filter cake and bagasse; by-products from a sugar mill   总被引:6,自引:0,他引:6  
Thailand has nearly 2 million tonnes of filter cake waste containing 1.8% total N from the sugar cane industry to dispose of annually. Compost studies were conducted to determine how rapidly this material can be converted to a stable product that may be useful in crop production, and to characterize the N transformations. Two kinds of sugar mill by-products were composted, filter cake and filter cake mixed with bagasse, at a 2:1 ratio to reduce the C:N ratio in an attempt to reduce N loss during composting. Materials were mixed manually at 3-5 day intervals during the composting process. Both composts were analyzed at least weekly to measure temperature, pH, NH4+, NO3-, total N content, C loss, and germination index. For both mixtures, the thermophilic stage lasted 15-20 days and was higher than ambient for nearly 80 days. The degradation of organic matter (OM) was rapid in both mixtures to approximately 40 days, after which it began to stabilize. Both mixtures achieved maturity at approximately 90 days as indicated by a stable C/N, low NH4+/NO3-, lack of heat production and a germination index higher than 80%. Mixing filter cake with bagasse helped conserve N during composting. Because N was in excess, approximately 12-15% was lost from the composts. Mixing more bagasse with the filter cake may result in further reduction in N losses. Both composts have potential for use in crop production.  相似文献   

5.
Composting of several organic wastes of different chemical composition (source-separated organic fraction of municipal solid waste, dewatered raw sludge, dewatered anaerobically digested sludge and paper sludge) was carried out under controlled conditions to study the suitability of different biological indexes (oxygen uptake rate, respirometric index, and respiratory quotient) to monitor the biological activity of the composting process. Among the indexes tested, oxygen uptake rate (also referred to as dynamic respirometric index) provided the most reliable values of microbial activity in a compost environment. On the other hand, values of the static respirometric index measured at process temperature, especially in the early stages of the composting process, were significantly lower than those of the dynamic index, which was probably due to oxygen diffusion limitations present in static systems. Both static and dynamic indexes were similar during the maturation phase. Static respirometric index measured at 37 degrees C should not be used with samples obtained during the thermophilic phase, since it resulted in an underestimation of the respiration values. Respiratory quotient presented only slight variations when changing the process temperature or the waste considered, and its use should be restricted to ensure aerobic conditions in the composting matrix.  相似文献   

6.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25°C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

7.
The evolution of the different forms of nitrogen during the composting of several wastes was studied, as well as its relation to the pH, electrical conductivity and parameters of maturity of the composts obtained. Four mixtures were prepared from different organic materials: sewage sludge, municipal solid waste, brewery sludge, sorghum bagasse, cotton waste and pine bark. The evolution of the different forms of nitrogen during composting depended on the material which supplied the nitrogen to the mixtures and the organic matter (OM) degradation rate during composting. The greatest concentration of ammonium was observed during the first weeks of composting, coinciding with the most intense period of OM degradation, and ammonium then decreased gradually to reach final values of below 0.04%. The use of urea as a nitrogen source in the mixtures led to high ammonium levels during the first weeks as a result of its rapid hydrolysis. The nitrification process began only when the temperature of the mixtures had dropped below 40 degrees C and its intensity depended on the quantity of ammonium present when the process began. The highest concentrations of NO3-N were always produced at the end of maturation, reaching values of 0.52%, 0.53%, 0.12% and 0.20% in the four mixtures studied. Nitrogen losses during composting depended on the materials used and on the pH values of the mixtures. Mixtures with the highest lignocellulose content showed the lowest losses (below 25%), while those containing municipal solid waste lost more than 40% of the initial content. Statistically significant correlations at a high probability level were found between the NO3-N concentration and pH and electrical conductivity. confirming that nitrification was responsible for the falling pH values and increasing electrical conductivity. The ratio of NH4-N and NO3-N concentrations was shown to be a clear indicator of the maturity of the mixtures during composting, the final values of 0.08, 0.04, 0,16 and 0.11 for the four mixtures being equal to, or below the maximum value established as a maturity index in other materials.  相似文献   

8.
Phytotoxicity of compost-amended soil is related to carbon mineralization associated with compost decomposition. The objective of this research was to determine if compost carbon mineralization potential, estimated using compost respiration rate measurements, could be combined with carbon mineralization kinetic models to predict phytotoxicity of compost-amended soil. First-order, second-order, and Monod kinetic models that include compost carbon mineralization potential, compost amendment rate, incubation time, and temperature were developed and compared for their ability to predict carbon mineralization kinetics. Experiments utilized two soil types amended with 0%, 5%, and 50% (v/v) food waste and green waste composts, incubated at 20 degrees C, 25 degrees C, 30 degrees C, 35 degrees C, and 45 degrees C for model development and under a diurnal temperature cycle from 20 degrees C to 30 degrees C for model validation. For most cases, a first-order model had an equivalent or better fit to the data than the other models. Mineralizable carbon estimated using the first-order model was significantly correlated to the probability of phytotoxicity in compost-amended soil.  相似文献   

9.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

10.
Two composts were obtained by co-composting of a concentrated depotassified beet vinasse and two agricultural solid residues with different organic matter nature: grape marc (GM; lignin waste) and cotton gin trash (C; cellulosic waste). Composting was carried out in aerated piles with mechanical turning, in controlled conditions during 4 months. After 71 days of composting, a new addition of vinasse similar to the initial addition was made. Changes in temperature, pH and inorganic nitrogen followed a similar path for both mixtures. However, organic matter fractions showed different behaviour depending on the material co-composted with vinasse. Lower organic matter degradation was observed when GM was used as bulking agent due to its high lignin content. No phytotoxicity was detected in the end products. The chemical and physical properties of both vinasse composts suggest their possible use as fertiliser.  相似文献   

11.
The changes in thermophilic fungi and biochemical characteristics, during windrow and bunker stages of phase I and phase II composts, were compared in this investigation. Composts prepared by the two phase I systems differed in a number of key parameters including mean straw length, population of Scytalidium thermophilum, dry matter, conductivity, nitrogen dry matter, ammonia, fibre content and ash. S. thermophilum populations in phase I composts were significantly higher in windrow compared to bunker‐composted materials as a result of the larger high temperature (65‐80°C) core in bunker treatment, which inhibited microbial activity. Assessment of the composts for loss of matter during composting has revealed that the bunker system can conserve fresh matter better than the windrow production system, possibly due to lower microbial activities during bunker composting. The productivity of the phase II composts prepared from windrow and bunker systems was compared in trials using commercial growers.  相似文献   

12.
The microbial degradation and temperature rise during the composting of a cattle waste and rice straw mixture blended with tofu (soybean curd) residue was investigated using an insulated and unheated in-vessel composter (effective volume, 12 1) and a static pile with passive aeration. The addition of 11% (dry weight basis) of tofu residue shortened the time required for temperature to reach the thermophilic phase and increased the duration of the temperatures above 55 degrees C significantly, but the maximum temperature was not affected by the additive level. As shown by the change in BOD, most of the easily biodegradable matter in the tofu residue was consumed during 12 days of composting. The same results were observed in the temperature profile of the static pile with passive aeration. Tofu residue addition yielded a higher maximum temperature and a nearly two times longer duration of temperatures above 55 degrees C in almost all locations of the pile. The use of tofu residue as a co-composting material would promote thermophilic degradation throughout the entire composting mass.  相似文献   

13.
In this work, the effect of incorporating an acidic ferrous sulphate waste (SF) over co-composting process of sewage sludge and olive mill solid wastes in a 1:2 v/v wet basis was investigated. The SF used was an industrial by-product of titanium oxide synthesis and its addition resulted in a chemical stabilisation of the wastes at low pH. The optimum dose of SF to enhance the composting of the studied biowastes was a 20% v/v (wet basis) and the best moment for the addition turned out to be whenever the composting piles had achieved the thermophilic range. The addition of SF over the composting process made possible a faster stabilisation, increasing the composting rate from 0.033 to 0.13 d(-1), and leading to a Fe and S rich compost. All composts obtained fulfilled the limits determined by current European and Spanish regulations and presented better characteristics for its use as soil amendment and organic fertilizer than the traditional composts without SF. The optimum dose of compost containing SF was determined through agronomic tests being its value about 18 Ton ha(-1).  相似文献   

14.
AIMS: The aim of this work was to study the effect of high temperatures generated during composting process, on the phytopathogen fungus Fusarium oxysporum f.sp. melonis. This investigation was achieved by both in vivo (semipilot-scale composting of horticultural wastes) and in vitro (lab-scale thermal treatments) assays. METHODS AND RESULTS: Vegetable residues infected with F. oxysporum f.sp. melonis were included in compost piles. Studies were conducted in several compost windrows subjected to different treatments. Results showed an effective suppression of persistence and infective capacity, as this process caused complete fungal elimination after 2-3 days of composting. In order to confirm the effect of high temperature during this process, in vitro experiments were carried out. Temperature values of 45, 55 and 65 degrees C were tested. All three treatments caused the elimination of fungal persistence. Treatment at 65 degrees C was especially effective, whereas 45 degrees C eliminated fungal persistence only after 10 days. CONCLUSIONS: The composting process is an excellent alternative for the management of plant wastes after harvesting, as this procedure is able to suppress infective capacity of several harmful phytopathogens such as F. oxysporum f.sp. melonis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium oxysporum f.sp. melonis is a plant pathogen fungus specially important in the province of Almería (south-east Spain), where intensive greenhouse horticulture is very extended. High temperatures reached during composting of horticultural plant wastes ensure the elimination of phytopathogen microorganisms such as F. oxysporum f.sp. melonis from vegetable material, providing an adequate hygienic quality in composts obtained.  相似文献   

15.
Seasonal changes in microbial populations and the activities of cellulolytic enzymes were investigated during the composting of municipal solid wastes at Damietta compost plant, Egypt. The changes in temperature, pH and carbon/nitrogen (C/N) ratio were also monitored. The results obtained showed that the temperatures of the windrows in all seasons reached the maximum after 3 weeks of composting and then decreased by the end of the composting period (35 days), but did not reach ambient temperature. Marked changes in pH values of the composts in all seasons were found, but generally, the pH was near neutrality. Significant increases in the size of the microbial populations were obtained in autumn and spring seasons compared to summer and winter seasons. The activities of cellulases were also higher in the autumn and spring seasons than in the summer and winter seasons. The decrease in C/N ratio in autumn and spring was higher than in summer and winter. It was evident that the degradation of organic matter increased by an increase in the microflora and its cellulolytic activities.  相似文献   

16.
This is the first detailed report of xylanolytic activity in Thermus strains. Two highly thermophilic xylanolytic bacteria, very closely related to non-xylanolytic T. thermophilus strains, have been isolated from the hottest zones of compost piles. Strain X6 was investigated in more detail. The growth rate (optical density monitoring) on xylan was 0.404.h-1 at 75 degrees C. Maximal growth temperature was 81 degrees C. Xylanase activity was mainly cell-bound, but was solubilized into the medium by sonication. It was induced by xylan or xylose in the culture medium. The temperature and pH optima of the xylanases were determined to be around 100 degrees C and pH 6, respectively. Xylanase activity was fairly thermostable; only 39% of activity was lost after an incubation period of 48 h at 90 degrees C in the absence of substrate. Xylanolytic T. thermophilus strains could contribute to the degradation of hemicellulose during the thermogenic phase of industrial composting.  相似文献   

17.
Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase (?50 °C) which lasted for 6 days. The 25% and 50% ash treatments reached 36–38 °C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of β-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.  相似文献   

18.
In this study, the evolution of the most important parameters (temperature, pH, electrical conductivity, total organic carbon, total nitrogen, and C/N ratio) describing the composting process of olive oil husk with other organic wastes was investigated. Four windrows for obtaining two mixed wastes composts (MWCs) and two green wastes composts (GWCs) were prepared.  相似文献   

19.
Temperature is an important factor regulating microbial activity and shaping the soil microbial community. Little is known, however, on how temperature affects the most important groups of the soil microorganisms, the bacteria and the fungi, in situ. We have therefore measured the instantaneous total activity (respiration rate), bacterial activity (growth rate as thymidine incorporation rate) and fungal activity (growth rate as acetate-in-ergosterol incorporation rate) in soil at different temperatures (0-45 degrees C). Two soils were compared: one was an agricultural soil low in organic matter and with high pH, and the other was a forest humus soil with high organic matter content and low pH. Fungal and bacterial growth rates had optimum temperatures around 25-30 degrees C, while at higher temperatures lower values were found. This decrease was more drastic for fungi than for bacteria, resulting in an increase in the ratio of bacterial to fungal growth rate at higher temperatures. A tendency towards the opposite effect was observed at low temperatures, indicating that fungi were more adapted to low-temperature conditions than bacteria. The temperature dependence of all three activities was well modelled by the square root (Ratkowsky) model below the optimum temperature for fungal and bacterial growth. The respiration rate increased over almost the whole temperature range, showing the highest value at around 45 degrees C. Thus, at temperatures above 30 degrees C there was an uncoupling between the instantaneous respiration rate and bacterial and fungal activity. At these high temperatures, the respiration rate closely followed the Arrhenius temperature relationship.  相似文献   

20.
The aims of this study were to assess changes in heavy metal availability in two contrasting feedstocks during aerobic composting, and the availability of said metals in the finished composts. A high C-to-N ratio mixed biodegradable municipal solid waste (MSW) feedstock was successfully composted on its own and in combination with green waste. Changes in heavy metal speciation throughout the composting process were studied using the modified BCR sequential extraction protocol. It was found that total Cu, Pb and Zn concentrations increased over time due to the progressive mineralization of the compost feedstock. Metals were fractionated differently within the two feedstocks, although only Cu showed significant redistribution (mostly to the oxidisable fraction) over the 5 month composting period. The MSW-derived composts performed comparably with other commercially-available composts in a series of plant growth trials. Plant metal accumulation was not influenced by the heavy metals present in the MSW-derived compost implying that they are not plant available. It is recommended that these relatively low value/quality composts may be used for remediation of acidic heavy metal contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号