首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The local cellular response induced by intraperitoneal injection of mitomycin C was examined in terms of cell-mediated cytotoxicity for tumor cells. An in vitro cytolysis assay involving 125I-iododeoxyuridine-labeled tumor target cells revealed that treatment of normal ACI/N rats (200 g) with a single intraperitoneal injection of mitomycin C (50, 100, or 200 g) induced tumoricidal macrophages in the peritoneal cavity. The tumoricidal activity was dependent on the dose of mitomycin C injected and it was detectable as early as 1 day after the intraperitoneal injection of mitomycin C. In addition to the increased tumoricidal activity, the functional activities of the peritoneal macrophages were found to be increased with respect both to uptake of 2-deoxy-d-glucose and to phagocytosis of latex beads. Additional experiments excluded the possibility that the tumor cell cytolysis was the result of direct cytotoxicity by mitomycin C that might have been incorporated in the peritoneal macrophages or of nutrient depletion in the medium during the cytolysis assay. Furthermore, endotoxin contamination of the mitomycin C, which might have produced the activated macrophages, was not detected. The mechanism by which mitomycin C injected intraperitoneally induced the tumoricidal macrophages locally remains uncertain; however, it is possible also in clinical situations.  相似文献   

2.
Summary The objective of the present investigation was to establish whether a known lymphoreticular-stimulating agent Corynebacterium parvum would augment the established antitumor activity of -difluoromethylornithine in vivo. Furthermore, since C. parvum is known to boost cell mediated cytotoxicity, the effect of DFMO (DL--difluoromethylornithine·HCl·H2O) treatment was evaluated on macrophage and natural killer (NK) cell tumoricidal activity. DFMO administered alone, 1% or 2% in drinking water, inhibited 49.4% or 88.0% of B16 melanoma growth in vivo, respectively. Administration of C. parvum alone, three doses of 300 g each, inhibited tumor growth 57.4%. When administered together, DFMO and C. parvum treatment resulted in 89.8% (1% DFMO) or 97.4% (2% DFMO) inhibition of melanoma growth depending upon the dose of DFMO. C. parvum-treated animals had increased levels of macrophage-mediated tumoricidal activity directed against B16 melanoma cells in vitro, however, NK cell activity was reduced. DFMO treatment alone had no effect on macrophage or NK cell tumoricidal activity. In animals receiving both C. parvum and DFMO treatments macrophage-mediated tumoricidal activity was augmented. These results demonstrate that C. parvum can augment the antitumor activity of DFMO in vivo, possibly through macrophage activation. Furthermore, in contrast to many other cancer chemotherapeutic drugs, DFMO is apparently not immunosuppressive regarding tumoricidal effector cells.  相似文献   

3.
Macrophages from A/J mice fail to develop tumoricidal activity after any of several in vivo or in vitro treatments that activate cells from C3H/HeN mice. Peritoneal macrophages from A/J mice treated i.p. with viable Mycobacterium bovis, strain BCG, killed Corynebacterium parvum, or pyran copolymer fail to develop in vitro tumoricidal activity; varying the numbers of macrophages from treated mice added to target cells, or the dose and time of treatment, or the treatment schedule of these in vivo activation stimuli did not evoke cytotoxic activity. Moreover, cytotoxic activity by macrophages from A/J mice was not observed with any of four target cell lines derived from three different mouse strains. In vitro treatment of peritoneal exudate macrophages from A/J mice with lymphokine-rich supernatants, bacterial endotoxins, or T cell mitogens was also ineffective; varying the numbers of treated macrophages added to target cells, the dose of in vitro activation stimuli, or the time of treatment did not evoke cytotoxic activity. Thus, A/J mice exhibit a profound defect in macrophage tumoricidal capacity to both in vivo and in vitro activation stimuli over a wide range of experimental conditions.  相似文献   

4.
Summary We observed that after KMT-17 cells had been treated with bleomycin (BLM), even with a dose as high as 160 g/ml, they were still able to form colonies in soft agar. We then studied the susceptibility of KMT-17 cells treated with BLM to activated macrophages. During a colony inhibition assay, BLM-treated KMT-17 cells were found to be much more susceptile to activated macrophages than nontreated KMT-17 cells, moreover, a tumor neutralizing assay showed that the growth of BLM-treated KMT-17 cells was also significantly inhibited by activated macrophages as compared with nontreated KMT-17 cells. Macrophages activated by both BLM and the Nocardia rubra cell wall skeleton were able to mediate such tumor inhibition activity in BLM-treated KMT-17 cells. Activated macrophages did not seem to have strong antitumor activity against nontreated KMT-17 cells in vivo, however, the life span of the rats which were inoculated i. p. with KMT-17 cells was significantly expanded after the tumorbearing rats were given BLM i.p. The data presented here suggest that not only does BLM have a direct tumoricidal effect on KMT-17 cells, it also regulates immunosensitivity of targets to immune effectors. We also discuss the mechanism for enhancing the susceptibility of KMT-17 cells to activated macrophages brought about by treatment with BLM.Supported in part by a Grant-in-Aid for Cancer Research from the Japanese Ministry of Education, Science, and Culture  相似文献   

5.
Activation of peritoneal macrophages by lysophosphatidylcholine   总被引:4,自引:0,他引:4  
Lysophosphatidylcholine (lyso-PC), a product of inflammation induced by infectious and other agents, is able to stimulate mouse peritoneal macrophages to ingest target cells coated with IgG but not IgM regardless of the presence of complement. In vitro treatment of mouse resident peritoneal macrophages (adherent cells) alone with lyso-PC stimulated spreading activity but did not enhance ingestion activity of macrophages. However, when mixed cultures of adherent and nonadherent (lymphocytes) cells were treated with lyso-PC, macrophage ingestion activity of IgG-coated target cells (i.e., via Fc-mediated ingestion) was markedly enhanced. Analysis of lyso-PC activation process of macrophages for ingestion activity suggests that nonadherent (lymphocytes) cells are required for the induction of the manifestation of ingestion capacity. This requirement was also met by addition of untreated nonadherent cells to treated adherent cells. Thus, the activation mechanism of macrophages by lyso-PC for ingestion requires contribution of lymphocytes to promote enhanced ingestion activity. Since lyso-PC is a metabolite of a representative membrane phospholipid, we propose that lyso-PC and other lysophospholipids are mediators for activation of macrophages regardless of the type of inflammation-causative agent.  相似文献   

6.
Engagement of the macrophage membrane by biologic particles including insoluble immune complexes inhibited the development of lymphokine-mediated nonspecific tumoricidal activity by murine macrophages. The degree of inhibition was dependent on the dose of particles and the lymphokine concentration. Inhibition was not due to macrophage cell death or to diminution of cell adherence after ingestion of the immune complexes. Soluble immune complexes were not inhibitory, although approximately 10% of the complexes became cell-associated. Monomeric or heat-aggregated IgG was also not inhibitory. IgG-opsonized erythrocytes (EA) were inhibitory and inhibition was dependent on the degree of opsonization. In contrast, nonopsonized erythrocytes (E), which did not bind to macrophages, were not inhibitory. Phagocytosis of glutaraldehyde-treated E or E carrying IgM antibody and complement (EAC) also led to a reduction of tumorilytic activity. Insoluble immune complexes were inhibitory when added either before or after lymphokine. Phagocytosis was neither sufficient nor necessary to cause inhibition because 1) ingestion of polystyrene latex beads did not diminish tumoricidal activity, and 2) macrophages plated on IgG-coated surfaces were inhibited with respect to the tumoricidal function. Inhibition was not affected when indomethacin (10(-6) M) was included in the assay, which indicated that prostaglandins were not involved in the process. Thus, macrophage tumoricidal responsiveness may be compromised by interaction of biologic substances with macrophage plasma membranes. This process may thereby inactivate an important host defense mechanism against neoplastic cells.  相似文献   

7.
Summary The effectiveness ofN-acetylmuramyl-l-alanyl-d-isoglutamine (MDP) or of liposomes containing a lipophilic MDP derivative, MDP-glyceroyldipalmitate MDP-GDP in inhibiting the growth of M5076 reticulum cell sarcoma liver metastases in C57BL/6 mice has been determined. MDP (100 µg) or liposomal MDP-GDP (2.5 µmol containing 1 µg) were equally effective in inhibiting liver metastatic growth when given as a single treatment 3 days before tumor cell injection. Therapeutic treatment, initiated 3 days after tumor cell injection and continued for a period of 2 weeks, failed to inhibit metastatic growth. Activation of thioglycollate-elicited peritoneal macrophages or Kupffer cells in vitro with MDP or liposomal MDP-GDP resulted in the expression of tumoricidal activity against M5076 tumor cells. Adoptive cellular therapy with four injections of 2 × 106 macrophages was ineffective: activation of the macrophages with either MDP or liposomal MDP-GDP prior to injection was effective in inhibiting liver metastatic growth. Incorporation of the macrophage toxin dichlorodimethylene diphosphonate within liposomes containing MDP-GDP abolished the ability of such liposomes to induce macrophage or Kupffer cell tumoricidal activity in vitro as well as the antitumor activity when administered 3 days before tumor cell challenge.  相似文献   

8.
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl- -arginine (L-NMMA), a specific inhibitor of the -arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated -arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate.  相似文献   

9.
Mice infected with Schistosoma mansoni develop a dramatic (five- to eightfold) increase in numbers of peritoneal leukocytes, and approximately 65% of these cells are macrophages. By several biochemical and cytochemical criteria, these cells were comparable to resident peritoneal macrophages of normal mice. However, macrophages from schistosome-infected mice exhibited significant nonspecific tumoricidal activity in vitro, a function associated with immunologically activated cells. The time course for development of activated macrophages in the peritoneal cavity was dependent upon the route of infection. Cytotoxic cells were present in the peritoneal cavity by 3 weeks after intraperitoneal infection, but were not evident until several weeks later in animals infected percutaneously, subcutaneously, or intravenously. However, by 3 weeks after subcutaneous infection, tumoricidal macrophages appeared in the peritoneal cavity after intraperitoneal challenge with soluble schistosome antigens. Macrophage activation was independent of the development of egg granulomas, since tumoricidal cells could be found prior to the onset of egg production and were also present in mice infected with only male worms. Development of activated macrophages in these instances is thus consistent with previous observations on induction of T lymphocyte reactivity toward schistosomula. Since other manipulations known to activate macrophages have been shown to induce partial resistance to schistosome infection, the finding that macrophage activation results from primary S. mansoni infection itself suggests that these cells may play a major role in acquired immunity to this parasite.  相似文献   

10.
Summary BALB/c mouse peritoneal macrophages prepared from WPC which had been treated with N. CWS demonstrated potent cytostatic activity against syngeneic Meth A fibrosarcoma cells. The maximum cytostatic activity developed in the macrophages when WPC were incubated with 25 g/ml N. CWS for 3 days. NAPC from BALB/c mice given an i. p. injection with 100 g N. CWS 7 days previously (N. CWS-NAPC) or supernatants from N. CWS-NAPC also activated peritoneal macrophages in vitro. However, when peritoneal macrophages were incubated with N. CWS in the absence of NAPC, or when T cells were depleted from WPC by treatment with anti-Thy 1.2 antibody and complement, N. CWS failed to enhance the cytostatic activity of the macrophages. Furthermore, thioglycollate-elicited peritoneal macrophages from C3H/HeN mice increased their cytolytic properties by incubation with supernatant fluids from N. CWS-treated spleen cells. These findings suggest that in vitro macrophage activation with N. CWS depends on MAF secreted from T lymphocytes. Abbreviations used: N. CWS, Nocardia rubra cell-wall skeleton; BRM, biological response modifier; MAF, macrophage activating factor; IL-1, interleukin 1; IL-2, interleukin 2; IFN-, interferon gamma; PCCM, peritoneal cell culture medium; SCCM, spleen cell culture medium; TCM, tumor culture medium; HI-FCS, heat-inactivated fetal calf serum; Con A, concanavalin A; PC, peritoneal cells; PEC, peritoneal exudate cells; WPC, whole peritoneal cells; APC, adherent peritoneal cells; TGC-APC, thioglycollateelicited adherent peritoneal cells; NAPC, nonadherent peritoneal cells; SN, supernatants; NK cells, natural killer cells; LAK cells, lymphokine activated killer cells E:T ratio, effector: target cell ratio; WSA, water soluble adjuvant; LPS, lipopolysaccharide; MDP, N-acetyl-muramyl-L-alanyl-D-isoglutamine  相似文献   

11.
Mouse inflammatory macrophages from C57BL/6N mice were fused with BALB/c mouse-derived myeloma cells (the CANS series). The hybrids in the early period after cell fusion (8 weeks) showed no macrophage functions (chemotaxis, EA and EAC rosette-forming abilities, phagocytosis or lysozyme production). EA rosette-forming ability was observed when these hybrids were treated with trypsin, whereas other macrophage functions were not. After prolonged culture, the hybrids (12 clones of 13 randomly selected) showed all the macrophage functions along with chromosome loss. Myeloma cell functions ( light chain production) were found in the young hybrids soon after cell fusion but were absent in the aged hybrids. These results indicated that reexpression of macrophage properties, except for EA rosette-forming abilities, takes place after the loss of chromosomes or genes repressing the expression of macrophage functions.  相似文献   

12.
Summary Microbial infection causes inflammation which stimulates macrophage functions. One of the inflammatory products, lysophosphatidylcholine (lyso-Pc), can stimulate macrophage activities. Treatment of mice with lyso-Pc enhanced spreading and ingestion activities of peritoneal macrophages. In vitro treatment of macrophages with lyso-Pc greatly enhanced spreading but not ingestion activities. However, incubation of a mixture of adherent and nonadherent cells with lyso-Pc produced a markedly enhanced ingestion activity of macrophages, implying the contribution of nonadherent cells to the stimulation of macrophages. Time course studies of the stimulation of these macrophages showed that spreading activity is stimulated immediately, even 30 min, after their contact with lyso-Pc while induction of ingestion activity requires a latent period of about 5 h. When the specificity of the macrophage receptors for ingestion was analyzed using defined immunoglobulins (i.e., IgG and IgM) with or without complement, lyso-Pc-activated macrophages efficiently ingested IgG-coated sheep erythrocytes independent of complement. However, macrophages of the same lyso-Pc-treated mice did not ingest erythrocytes coated with IgM and complement. These observations suggest that lyso-Pc-stimulated macrophages ingest the targets via Fc-receptors but not C3b receptors.  相似文献   

13.
A 45-60 kDa Gal/GalNAc-specific macrophage lectin was found to participate in the interaction between tumor cells and tumoricidal macrophages activated by an antitumor streptococcal preparation, OK-432, and in the tumoricidal activity of the activated macrophages. The binding between OK-432-elicited activated macrophages and murine mastocytoma P-815 cells was inhibited on preincubation of the macrophages with a neoglycoprotein (Gal-BSA) or a complex-type glycopeptide (unit B) which was a specific inhibitor of the macrophage lectin. This binding of the macrophages to P-815 cells was also inhibited on the addition of anti-macrophage lectin antiserum. Contrary to the case of OK-432-elicited macrophages, the binding of thioglycolate-elicited (responsive) macrophages to P-815 cells was inhibited only a little by Gal-BSA and unit B, and not inhibited by the antiserum. Furthermore, the tumoricidal activity of the activated macrophages was inhibited by the addition of the anti-macrophage lectin antiserum. These results suggest that the binding of activated macrophages to tumor cells through the Gal/GalNAc-specific macrophage lectin is an important part of the tumor cell killing mechanism.  相似文献   

14.
We have previously suggested that thymosin 1 (thy1), an immunomodulating thymic hormone, can activate tumor-associated macrophages to a tumoricidal state in a murine model bearing a transplantable T-cell lymphoma of spontaneous origin designated as Dalton's lymphoma (DL). Since tumor-infiltrating dendritic cells (DC) also play an important role in the host's antitumor response and are as such in an immunocompromised state in a tumor-bearing host, in the present investigation we studied if thy1 is able to influence the differentiation of tumor-associated macrophages (TAM) into DC with granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (IL)-4 and tumor necrosis factor (TNF) and whether these TAM-derived DC show enhanced antitumor activity. It was observed that DC generated from thy1-administered tumor-bearing mice showed augmented antitumor activity in vitro. Adoptive immunotherapy using TAM-derived DC showed a significant delay in the tumor growth and a prolongation of the survival time in tumor-bearing mice. DC obtained from TAM of thy1-administered mice also produced an enhanced amount of cytokines like IL-1 and TNF-. This is the first study of its kind regarding the effect of thy1 on the differentiation of DC from TAM and the role of TAM-derived DC in tumor progression.  相似文献   

15.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   

16.
Summary The lyophilized, squalene-treated Nocardia rubra cell wall skeleton (N-CWS) was confirmed to produce tumoricidal peritoneal macrophages resulting in inhibition of tumor growth when injected locally into the syngeneic ascites fibrosarcoma, AMC 60 in ACI/N rats. Furthermore, N-CWS was found to augment therapeutic effect when administered repeatedly after a single local injection of mitomycin-C (MMC). To analyze the effects, various in vitro cytolysis assays were performed using N-CWS-activated peritoneal macrophages. When tumor target cells were exposed in vitro to MMC, the resulting cytolysis in the presence of N-CWS-activated macrophages was similar to cytolysis of intact target cells. On the other hand, when N-CWS-activated macrophages were exposed to MMC, the tumoricidal activity was lost significantly, depending on exposure to MMC. When tumor target cells and N-CWS-activated macrophages were simultaneously exposed to MMC, tumor-cell cytolysis was strikingly depressed. In the final experiment, combined injection of MMC and N-CWS into the ascites tumor resulted in remarkable increases not only in peritoneal exudate cell number, but also in in vitro tumoricidal activity of peritoneal macrophages as compared to those induced by either agent alone. In addition, the production of tumoricidal macrophages by IP injection of MMC alone was also noticeable, as described previously. These results possibly indicate the involvement of macrophage activation in induction of therapeutic effect in chemoimmunotherapy.This work was supported in part by grants from the Ministry of Health and Welfare, and the Ministry of Education, Science and Culture  相似文献   

17.
Inhibition of macrophage tumoricidal activity by glucocorticoids   总被引:5,自引:0,他引:5  
In this study, the effect of corticosteroids on the activation of macrophages to a fully tumoricidal state was examined. Thioglycolate-elicited peritoneal exudate macrophages from C3H/HeJ mice were rendered cytolytic for P815 mastocytoma cells in a two-signal tumoricidal assay that used recombinant interferon-gamma (rIFN-gamma; 1 to 10 U/ml) as a "priming" signal and butanol-extracted lipopolysaccharide (But-LPS; 0.1 to 5 micrograms/ml) as a "trigger" signal. Treatment of macrophages with either rIFN-gamma alone or But-LPS alone failed to result in significant cytolytic ability. Tumoricidal activity was markedly inhibited in a dose-dependent fashion when glucocorticoids were added simultaneously to the cultures with rIFN-gamma and But-LPS at concentrations ranging from 1 X 10(-10) to 1 X 10(-5) M. Nonglucocorticoid sex hormones failed to inhibit tumoricidal activity in this system under identical culture conditions. Inhibition was most effective if the glucocorticoids were added simultaneously with the priming and triggering signals (rIFN-gamma and But-LPS); however, if the glucocorticoids were added 24 hr after the signals were provided to the cultures, suboptimal inhibition was observed. Experiments that dissociated the priming phase of activation from the triggering phase showed that glucocorticoids inhibited both the rIFN-gamma-induced priming stage as well as the But-LPS-induced triggering stage of activation. These observations provide evidence that glucocorticoids, but not other steroid hormones, inhibit the activation of macrophages to a fully tumoricidal state by interfering with either the priming or triggering signals in this two-signal model of macrophage activation.  相似文献   

18.
We have previously established that IFN-gamma plus IL-2 induces murine macrophage tumoricidal activity. The purpose of this study was to identify the effector molecules that account for the IFN-gamma plus IL-2-induced macrophage cytotoxicity against P815 mastocytoma cells. ANA-1 macrophages and normal thioglycollate-elicited mouse peritoneal macrophages produced little or no detectable nitrite (NO2-) after incubation with IFN-gamma alone or IL-2 alone; however, IL-2 synergized with IFN-gamma for the production of NO2-. IFN-gamma plus IL-2 did not induce NO2- production or tumoricidal activity in ANA-1 macrophages that were cultured in medium devoid of L-arginine or in ANA-1 macrophages that were incubated with NG-monomethyl-L-arginine. As observed previously with ANA-1 macrophage tumoricidal activity, IL-4 inhibited IFN-gamma plus IL-2-induced, but not IFN-gamma plus LPS-induced, NO2- production. IL-4 also selectively decreased the ability of IFN-gamma and/or IL-2 to augment TNF-alpha mRNA expression in ANA-1 macrophages. Lastly, incubation of ANA-1 macrophages with anti-TNF mAb selectively inhibited the ability of IFN-gamma plus IL-2 to induce NO2- production and tumoricidal activity. These results indicate that IFN-gamma plus IL-2-induced tumoricidal activity is dependent upon the metabolism of L-arginine to reactive nitrogen intermediates, and they establish a role for TNF-alpha as a required intermediate for IL-2-dependent NO2- production and tumoricidal activity.  相似文献   

19.
Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNFα) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNFα and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo.  相似文献   

20.
Summary We have investigated the ability of liposomes containing a lipophilic muramyl dipeptide, N-acetylmuramyl-l-alanyl-d-isoglutamine glycerol dipalmitate (MDP-GDP) to activate Kupffer cell tumoricidal activity in situ and to inhibit the growth of experimental hepatic micrometastases of tumor cell line H-59, a liver-homing variant of the Lewis lung carcinoma. Liposomes prepared from distearoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DSPC/DMPG) and containing MDP-GDP (1 mol and 2 g, respectively) were efficiently taken up by the liver after i.v. administration. A single i.v. injection of DSPC/DMPG liposomes containing MDP-GDP was capable of inducing Kupffer cell tumoricidal activity against H-59 tumor cells as measured in vitro. Control liposomes or 100 g free MDP were ineffective in inducing Kupffer cell tumoricidal activity in situ. Two treatment regimens were evaluated in vivo: firstly, C57BL/6 mice were injected with tumor cell line H-59 and subsequently treated with multiple injections of liposomal MDP-GDP. Secondly, treatment with liposomal MDP-GDP was initiated prior to tumor cell injection and continued after tumor cell injection. The ability of liposomes containing MDP-GDP to reduce the number of hepatic micrometastases using the first protocol was related to the tumor cell inoculum, significant inhibition being observed at lower liver tumor burdens (<25 tumor nodules). Pretreatment of the mice prior to tumor cell challenge followed by treatment afterwards greatly enhanced the efficacy of liposomal MDP-GDP and brought about a highly significant inhibition of the growth of experimental metastases even at high liver tumor burdens (>50 nodules).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号