首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Floral initiation in strawberry cv. Cambridge Favourite, a facultative short-day plant, was inhibited by a daylength extension with red light (R) during the second half of a 16-hour night but not during the first half, and by far-red light (FR) in the first half but not during the second. Mixed R plus FR light was inhibitory to flowering at both times. This change in sensitivity to R and FR light in the evening and morning resembles the pattern for flower induction in long-day plants but differs from the pattern for flower inhibition in several other short-day plants, examples of which are given. These experiments afford further support for the hypothesis that the control of flower initiation in strawberry depends on the production of a flower inhibitor by leaves exposed to long photoperiods.Abbreviations R red - FR far-red - SD short day - LD long day - SDP short-day plant - LDP long-day plant  相似文献   

2.
H. Adamson  N. Packer  J. Gregory 《Planta》1985,165(4):469-476
Intact plants and isolated leaves of Zostera capricornii Martens ex Aschers were transferred from daylight to darkness. Substantial amounts of chloropyll a and b continued to accumulate in immature and mature tissue in the same ratio as in the light and were incorporated into chlorophyll-protein complexes in the thylakoids. A small amount of protochlorophyllide also accumulated in immature tissue in the dark. Proplastids and immature chloroplasts continued to develop into mature chloroplasts in the dark in the normal manner but prolamellar bodies, which are a conspicuous feature of immature chloroplasts, took longer to disperse than in the light. Protochlorophyllide accumulation and prolamellar-body formation were not correlated. The results indicate that Zostera has a genetic capacity for dark chlorophyll synthesis which is expressed in immature and mature leaf tissue and enables this plant to continue synthesising chlorophyll and assembling chloroplasts at night.Abbreviations Chl chlorophyll - T o time of transfer to darkness  相似文献   

3.
THOMPSON  P. A. 《Annals of botany》1981,47(5):623-634
The sizes of seeds in populations of Silene dioica were comparedincluding observations on variation within and between plantsin a population growing wild in south-east England. The meanseed weights of different populations from Europe displayedvariations, which contrasted with rather stable means foundin a population sampled in 4 different years, or compared whengrowing under natural conditions or in cultivation. Variationsfrom plant to plant within a population, between populationswithin a particular area, and between different capsules fromthe same plant were similar in range and distribution to thedifferences found between populations. Seed size did not appearto be correlated with season of maturity, level of dormancy,or position on the flower truss, but significant differenceswere found in mean seed weights from different individual plants. The results are discussed in relation to the natural distributionof the species, and its role as an opportunist species inhabitingthe edges of deciduous woodlands. Silene dioica (L.) Clairv., red campion, seed size  相似文献   

4.
When intact plants of Xanthium strumarium L. were water stressed, the youngest leaves accumulated the highest levels of abscisic acid (ABA). On the other hand, when leaves of different ages were detached and then stressed, the capacity to produce ABA was highest in the mature leaves. Radioactive ABA was transported from mature leaves to the shoot tips and young leaves, as well as to the roots, as evidenced by the presence of radioactive ABA and phaseic acid in the xylem exudate coming from the roots. Thus, ABA was recirculated in the plant, moving down the stem in the phloem and back up in the transpiration stream to the mature leaves. Phloem exudate collected by the use of the EDTA technique had a high concentration of ABA and phaseic acid which increased several-fold after water stress. The high ABA levels in immature leaves and apical buds are, therefore, mainly due to import from older leaves, rather than to in situ synthesis.  相似文献   

5.
Growth analysis techniques are used to test the hypothesis that chilling induces curd (flower) initiation in the cauliflower ( Brassica oleracea Botrytis L. cv. Perfection) through inhibiting leaf growth, thereby increasing the availability of growth factors to the stem apex and enabling differentiation of the curd. Effects of chilling on leaf growth and curd induction are compared in juvenile and mature, vegetative plants. Chilling at 5°C reduced dry matter accumulation in the total leaf complement by ca 60% in juvenile plants and 40% in mature plants, compared to control plants growth at 20°C. Juvenile plants showed slower rates of leaf initiation than mature plants. Leaf initiation was retarded by chilling in both plant types with the most marked effect seen in the juvenile plants. This was consistent with dry matter availability to the stem apex limiting differentiation more severely in juvenile plants than in mature plants. The rate of dry matter accumulation in existing leaves, however, was faster in juvenile plants than in mature plants at 20°C. Plants that were juvenile during chilling produced an average of 43 leaves below the curd whereas those that were mature produced 25.
Dry matter accumulation in younger leaves was more markedly inhibited by chilling than in older leaves. Chilling also reduced the rate at which enlarging leaves became positionally more remote from the stem apex. Possible roles for such leaves in regulating apical development are considered.  相似文献   

6.
Leaves of varying maturity from 84-day-old tobacco plants were harvested and analyzed for total sterol and their individual sterol components. The mature leaves had a significant higher sterol content than the immature leaves. Separation into free sterols, steryl esters, steryl glycosides, and acylated steryl glycosides showed that the free sterols accounted for most of the sterol increase, and stimgasterol was principally responsible for this increase.  相似文献   

7.
The rapid growth and prolific reproduction of many insect herbivores depend on the efficiencies and rates with which they acquire nutrients from their host plants. However, little is known about how nutrient assimilation efficiencies are affected by leaf maturation or how they vary between plant species. Recent work showed that leaf maturation can greatly decrease the protein assimilation efficiency (PAE) of Lymantria dispar caterpillars on some tree species, but not on species in the willow family (Salicaceae). One trait of many species in the Salicaceae that potentially affects PAE is the continuous (or “indeterminate”) development of leaves throughout the growing season. To improve our understanding of the temporal and developmental patterns of nutrient availability for tree-feeding insects, this study tested two hypotheses: nutrients (protein and carbohydrate) are more efficiently assimilated from immature than mature leaves, and, following leaf maturation, nutrients are more efficiently assimilated from indeterminate than determinate tree species. The nutritional physiology and growth of a generalist caterpillar (L. dispar) were measured on five determinate and five indeterminate tree species while their leaves were immature and again after they were mature. In support of the first hypothesis, caterpillars that fed on immature leaves had significantly higher PAE and carbohydrate assimilation efficiency (CAE), as well as higher protein assimilation rates and growth rates, than larvae that fed on mature leaves. Contrary to the second hypothesis, caterpillars that fed on mature indeterminate tree leaves did not have higher PAE than those that fed on mature determinate leaves, while CAE differed by only 3% between tree development types. Instead, “high-PAE” and “low-PAE” tree species were found across taxonomic and development categories. The results of this study emphasize the importance of physiological mechanisms, such as nutrient assimilation efficiency, to explain the large variation in host plant quality for insect herbivores.  相似文献   

8.
9.
Jan A. D. Zeevaart 《Planta》1969,84(4):339-347
Summary The long-short-day plant Bryophyllum daigremontianum can be induced to flower by transfer from long to short days (LDSD), or by gibberellin (GA) application under SD. Application of GA to mature leaves of intact or partially defoliated plants induces flowering more effectively than when applications are made to the youngest leaf pair and the shoot tip.Mature leaves on de-budded plants in SD are induced to produce floral stimulus by GA application, as demonstrated by grafting LD receptor scions onto the debudded plants, or by grafting SD leaves treated with GA onto receptor stocks in LD. This shows that GA applied to Bryophyllum in SD exerts its flower-promoting effect in the leaves.The minimal number of SD necessary for flower formation in Bryophyllum is approximately 15, both in case of photoinduction by the shift LDSD, and after GA treatment in SD. It is concluded that the LD part of photinduction establishes a high level of endogenous GAs in the leaves which is a prerequisite for production of floral stimulus under subsequent SD.Work supported by the United States Atomic Energy Commission, Contract No. AT(11-1) 1338.  相似文献   

10.
Iron administration to iron-starved cocklebur (Xanthium pensylvanicum) plants causes an increase in the iron content of ferritin fractions extracted from mature leaves. Xanthium plants grown under long days (vegetative stage) have more iron and ferritin than similarly iron-treated plants induced to flower under short day regimes. This first demonstration of ferritin in cocklebur (Compositae) leaves suggests that a substantial portion of iron that enters the iron-starved plant appears as this protein-iron macromolecule.  相似文献   

11.
Varying light intensity and temperature treatments were applied to whole plants, or to the leaves, or to the flower buds of ‘Baccara’ roses. The effect of these treatments on flower dimensions and pigmentation of the petals was examined. Cooling only the leaves had no effect; cooling only the buds enhanced both bud weight and pigmentation, but the effect was less marked than when the whole plant was cooled. Reducing plant temperature by misting with desalinated water enhanced both pigmentation and flower size. Darkening of only the leaves, or their removal, resulted in an inhibition of the pigmentation and also in a decrease in bud weight. Darkening of only the flower bud did not affect either pigmentation or bud weight, but caused bud elongation. It is suggested that light intensity and temperature affect flower growth and pigmentation via their effects on the availability of sugars in the flower bud.  相似文献   

12.
Curd Initiation in the Cauliflower: I. JUVENILITY   总被引:1,自引:0,他引:1  
Hand, D. J. and Atherton, J. G. 1987. Curd initiation in thecauliflower. I. Juvenility.—J. exp. Bot. 38: 2050–2058. Four cauliflower (Brassica oleracea var. botrytis L.) cultivarswere screened for differences in juvenility, measured as thephase of insensitivity to vernalization. Juvenility persisteduntil the initiation of a critical number of leaves which sharplydefined transition to the sensitive, mature form at 13 to 15leaves in cv. Perfection and at 17 to 19 leaves in cv. WhiteFox. Preliminary investigation showed transition in cv. AlphaCliro to occur between 9 and 18 leaves initiated and in cv.Dole after 19 leaves. Leaf number was a stable marker of theend of juvenility in plants grown under different light conditions,whereas time, leaf area and leaf dry weight were not. Leaf numberwas linearly related to log whole shoot dry weight. The rateof leaf initiation in plants of cv. Perfection growing duringthe juvenile phase was approximately one third that of plantsin the mature phase, when measured on a thermal time base. Chilling mature, vegetative plants at 5 °C for 28 d advancedcurd initiation by up to 35 leaves in cv. Perfection; 27 leavesin cv. White Fox; 27 leaves in cv. Alpha Cliro and 21 leavesin cv. Dok, compared with plants grown continuously at 20 °C. Key words: Cauliflower, vernalization, juvenility  相似文献   

13.
The effects of CO2 enrichment on growth of Xanthomonas campestris pv. pelargonii and the impact of infection on the photosynthesis and export of attached, intact, 'source' leaves of geranium ( Pelargonium x domesticum, 'Scarlet Orbit Improved' ) are reported. Two experiments were performed, one with plants without flower buds, and another with plants which were flowering. Measurements were made on healthy and diseased leaves at the CO2 levels (35 Pa or 90 Pa) at which the plants were grown. There were no losses of chlorophyll, or any signs of visible chlorosis or necrosis due to infection. Lower numbers of bacteria were found in leaves at high CO2, suggesting growth at elevated CO2 created a less favourable condition in the leaf for bacterial growth. Although high CO2 lowered the bacterial number in infected leaves, reductions in photosynthesis and export were greater than at ambient CO2. The capacity of infected source leaves to export photoassimilates at rates observed in the controls was reduced in both light and darkness. In summary, the severity of infection on source leaf function by the bacteria was increased, rather than reduced by CO2 enrichment, underscoring the need for further assessment of plant diseases and bacterial virulence in plants growing under varying CO2 levels.  相似文献   

14.
Acclimated and non-acclimated potted plants of Sanguinaria canadensis L. were harvested at early and late dormancy, anthesis, and immature and mature fruiting stages. Sanguinarine content and concentration were determined for rhizomes (distal, proximal, and middle sections), roots, leaves, flower, and fruit. Rhizomes had highest sanguinarine content and concentrations, and exhibited decreasing concentration gradients from the distal to proximal third. Concentrations in roots were a tenth of rhizome concentration. Concentrations in leaves, flowers, and fruit were one-thousandth of rhizome Sanguinarine content in whole acclimated plants was constant. Content in whole nonacclimated plants increased as the plant became physiologically active, but was constant during fruit maturation: content in roots, leaves, and fruit did not change. The substantial increase in whole-plant dry weight coupled with the unchanging sanguinarine content during fruit maturation suggests either a shift in photosynthate allocation from defense to growth, or a constant turnover of sanguinarine.  相似文献   

15.
Seed and seedling expiants of pigeonpea were evaluated for organogenesis and somatic embryogenesis. De novo plant regeneration through organogenesis was obtained from mature cotyledons, primary leaves and roots of seedlings. Production of multiple shoots from the cotyledonary node was observed in cultures of whole seeds on 6-benzylaminopurine enriched medium. Somatic embryos were induced from immature cotyledons and embryonal axes, however, well-developed plants could not be derived from these embryos. The regenerants obtained through organogenesis were transferred to the field and grown to maturity.  相似文献   

16.
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.  相似文献   

17.
18.
An achlorophyllous lethal-yellow (LY) soybean mutant was demonstrated to be capable of survival when provided with a suitable carbon source. In this study the carbon source was a normally pigmented soybean plant to which the LY was grafted. When grafted to a green plant the LY grew to maturity and produced viable seeds. Under moderate to high light intensities the LY leaves possessed virtually no chlorophyll; however, under low levels of continuous illumination the chlorophyll content of LY leaves increased greatly and these leaves were then capable of limited photosynthetic activity. Under the low-light conditions, LY plants could survive, independent of grafting, for several weeks. A major genetic difference in the LY when compared to its chlorophyllous counterparts appears to be a tendency for rapid chlorophyll degradation rather than inability to synthesize it.  相似文献   

19.
Electrophysiological processes were investigated in reception organs of photoperiodism in a model short-day plant,Chenopodium rubrum L. (selection 374), within the inductive cycle for flowering. Transorgan (surface) electric potential (Etr) was measured as a potential difference between the first leaf surface and the roots of an intact plant, and between the surface of an excised leaf and the petiole base. The time-course of Etr in intact plants showed irregular, or partially regular, oscillations within both phases of the inductive cycle and under continuous light. The highest amplitudes were during the postinductive light period. Etr in excised leaves behaved practically in the same way as in intact plants. The Etr oscillations were localized in leaves. In general, no electrophysiological changes were found in the reception organs within the inductive cycle which could be correlated with the formation and transport of floral stimulus, or with the attainment of an induced state. The results indirectly support the idea that the floral stimulus is chemical in nature.  相似文献   

20.
The ‘Lord Byron’ cultivar of Fuchsia hybrida is a long day plant for which GA acts as an inhibitor of flower initiation. At the dosages required to inhibit initiation (0.025 μg per plant) GA also promotes increased stem elongation but causes no other departures from normal development. Similar tests with auxins, antiauxins, kinins, and other substances showed no effect on flower initiation at dosages equivalent to that for GA. At 10- to 100-fold greater dosages, auxins, kinins, and anti-auxins inhibit not only flower initiation but also vegetative development. Thus the effect of GA on flower initiation appears to be unique, although other hormonal substances, such as abscisin, have not been tested. GA-induced inhibition is directly proportional to the dosage applied and inversely to the strength of long day induction (as measured by the number of long days). GA is most effective when applied to the terminal bud rather than to the mature leaves, suggesting that it is active at the site of flower initiation rather than in the leaves. If it is applied after translocation of the floral stimuli from the leaves, GA does not prevent flower initiation. Regardless of the dose applied, GA is less effective if applied later rather than earlier during LD induction. The inhibitory effect persists for several days. For example, an 0.85 μg dosage causes an 8–10-day delay in initiation; lower dosages have reduced effects. GA inhibits flower initiation but has no effect upon flower development. The rate of bud development is the same in GA-treated and control plants. Apparently no more than one to two axillary buds immediately below the apical meristem are receptive to long day-induced floral stimuli from the leaves. Regardless of the daylength conditions axillary buds more basal do not initiate flowers but develop into branch axes. The effect of a long day treatment persists for a very short time, perhaps no longer than the inhibition caused by minimal GA dosage. Thus flower initiation continues for a very short time following the end of long day induction. The significance of these findings is discussed in relation to the many reports of GA-induced inhibition as well as promotion of flower initiation. In particular, the discussion concerns the nation that flower initiation in fuchsia may be controlled by a gibberellin-like transmissible inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号