首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Argonaute proteins are recently identified and evolutionarily conserved family with two subfamilies Ago and Piwi, which play important roles in small RNA pathways. Most species have eight Argonaute members in their genomes, ranging from 1 to 27. Here we report identification of six Argonaute genes in pig, four members of the Ago subfamily (Ago1, Ago2, Ago3 and Ago4) and two members of the Piwi subfamily (Piwil1 and Piwil2), which were predicted to encode proteins of 857, 860, 860, 861, 861 and 985 amino acids, respectively. Phylogenetic analysis showed that the porcine Ago and Piwi genes were clustered into relevant branch of mammalian Argonaute members. The porcine Ago4- Ago1-Ago3 genes are linked together at the p12 of the chromosome 6, while Ago2 is located at the p15 of the chromosome 4. The porcine Piwil1 and Piwil2 are mapped together onto the chromosome 14, at the q14 and q11 respectively. Comparatively mapping of the Argonaute members on chromosomes showed that linkage group of the Ago4-Ago1-Ago3 and several neighborhood genes is evolutionarily conserved from chicken to mammals. The genes Piwil1 and Piwil2 are separated onto different chromosomes from fish to mammals, with exception to this tendency in both pig and stickleback, indicating an opposite tendency of recombination together or non-disjunction of these two genes during speciation. Further expression analysis showed an ubiquitous expression pattern of Ago members, oppositely a restricted expression pattern in gonads of the Piwi members, suggesting distinct potential roles of the porcine Argonaute genes.  相似文献   

3.
A primary role of P-glycoprotein (P-gp), encoded by the multidrug resistance type I gene, is to protect against naturally occurring xenotoxics. Recently, the preferential expression of chicken multidrug resistance type I (Cmdr1) was identified in the embryonic gonads during the early periods of development. Here we investigated the expression of Cmdr1 and P-gp in the gonads during embryogenesis, and compared to that in the ovarian follicles of domestic hens (Gallus gallus). As revealed by immunohistochemistry, P-gp was highly expressed in theca cells of mature follicles, whereas the expression was low in immature follicles. Immunohistochemical analysis showed that expression of Cmdr1-type P-gp was very low in embryonic gonads. Cmdr1 mRNA was undetectable in the gonads of 5-day embryos (E5) by RT-PCR, whereas Cmdr1 mRNA was significantly detectable in the developing gonads at E9 and E21. In the testicular tissues, germ cells were distributed along developing seminiferous cords as identified by a specific marker gene, whereas Cmdr1-type P-gp positive cells were observed evenly on testicular tissues. Collectively, it is concluded that Cmdr1 expression is initiated in the chicken ovary and testis after sexual differentiation, but expression of Cmdr1-type P-gp is very low through embryogenesis.  相似文献   

4.
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.  相似文献   

5.
The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.  相似文献   

6.
7.
8.
9.
Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.  相似文献   

10.
11.
12.
Thermal manipulation during embryogenesis has been demonstrated to enhance the thermotolerance capacity of broilers through epigenetic modifications. Heat shock proteins (HSPs) are induced in response to stress for guarding cells against damage. The present study investigates the effect of thermal conditioning during embryogenesis and thermal challenge at 42 days of age on HSP gene and protein expression, DNA methylation and in vitro luciferase assay in brain tissue of Naked Neck (NN) and Punjab Broiler-2 (PB-2) chicken. On the 15th day of incubation, fertile eggs from two breeds, NN and PB-2, were randomly divided in to two groups: control (C)—eggs were incubated under standard incubation conditions, and thermal conditioning (TC)—eggs were exposed to higher incubation temperature (40.5°C) for 3 h on the 15th, 16th, and 17th days of incubation. The chicks obtained from each group were further subdivided and reared under different environmental conditions from the 15th to the 42nd day as normal [N; 25 ± 1 °C, 70% relative humidity (RH)] and heat exposed (HE; 35 ± 1 °C, 50% RH) resulting in four treatment groups (CN, CHE, TCN, and TCHE). The results revealed that HSP promoter activity was stronger in CHE, which had lesser methylation and higher gene expression. The activity of promoter region was lesser in TCHE birds that were thermally manipulated at the embryonic stage, thus reflecting their stress-free condition. This was confirmed by the lower level of mRNA expression of all the HSP genes. In conclusion, thermal conditioning during embryogenesis has a positive impact and improves chicken thermotolerance capacity in postnatal life.  相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (GPx4) is a selenocysteine-containing enzyme, and three different isoforms (cytosolic, mitochondrial, and nuclear) originate from the GPx4 gene. Homozygous GPx4-deficient mice die in utero at midgestation, since they fail to initiate gastrulation and do not develop embryonic cavities. To investigate the biological basis for embryonic lethality, we first explored expression of the GPx4 in adult murine brain and found expression of the protein in cerebral neurons. Next, we profiled mRNA expression during the time course of embryogenesis (embryonic days 6.5-17.5 (E6.5-17.5)) and detected mitochondrial and cytosolic mRNA species at high concentrations. In contrast, the nuclear isoform was only expressed in small amounts. Cytosolic GPx4 mRNA was present at constant levels (about 100 copies per 1000 copies of glyceraldehyde-3-phosphate dehydrogenase mRNA), whereas nuclear and mitochondrial isoforms were down-regulated between E14.5 and E17.5. In situ hybridization indicated expression of GPx4 isoforms in all developing germ layers during gastrulation and in the somite stage in the developing central nervous system and in the heart. When we silenced expression of GPx4 isoforms during in vitro embryogenesis using short interfering RNA technology, we observed that knockdown of mitochondrial GPx4 strongly impaired segmentation of rhombomeres 5 and 6 during hindbrain development and induced cerebral apoptosis. In contrast, silencing expression of the nuclear isoform led to retardations in atrium formation. Taken together, our data indicate specific expression of GPx4 isoforms in embryonic brain and heart and strongly suggest a role of this enzyme in organogenesis. These findings may explain in part intrauterine lethality of GPx4 knock-out mice.  相似文献   

14.
Li D  Sun H  Deng W  Tao D  Liu Y  Ma Y 《Zoological science》2011,28(6):397-402
Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos. Piwi proteins are required for germline and stem cell development. Our previous study demonstrated that Zili, zebrafish Piwil2, inhibits transforming growth factor (TGF)-βsignaling by interacting with Smad4, suggesting a role for zili in Bmp signaling. In the present study, zili-MO or zili mRNA was microinjected into one-cell embryos to knock down or elevate the expression of zili to study the role of zili during early zebrafish embryogenesis. Knockdown of zili inhibited the expression of dorsal marker genes, and enhanced that of ventral marker genes. In contrast, overexpression of zili promoted expression of dorsal marker genes, while it inhibited ventral marker genes. These results suggest that zili regulates DV patterning. The influence of zili on the Bmp pathway was further explored. Knockdown of zili resulted in higher expression levels of bmp2b, and bmp4, the Bmp signaling ligands, and reduced expression of chordin (chd), noggin (nog1), and follistatin (fst), which encode BMP antagonists. Meanwhile, overexpression of zili produced opposite effects. In conclusion, our results indicate that zili regulates dorsal-ventral patterning by antagonizing Bmp signaling during early embryogenesis in zebrafish.  相似文献   

15.
Reproductive capacity is fundamental to the survival of all species. Consequently, much research has been undertaken to better understand gametogenesis and the interplay between germ cells and the somatic cell lineages of the gonads. In this study, we have analyzed the embryonic expression pattern of the X-linked gene family Reproductive homeobox genes on the X chromosome (Rhox) in mice. Our data show that eight members of the Rhox gene family are developmentally regulated in sexually dimorphic and temporally dynamic patterns in the developing germ cells during early gonadogenesis. These changes coincide with critical stages of differentiation where the germ cells enter either mitotic arrest in the testis or meiotic arrest in the ovary. Finally, we show that Rhox8 (Tox) is the only member of the Rhox gene family that is expressed in the somatic compartment of the embryonic gonads. Our results indicate that the regulation of Rhox gene expression and its potential function during embryogenesis are quite distinct from those previously reported for Rhox gene regulation in postnatal gonads.  相似文献   

16.
17.
18.

Gonadotropin-inhibitory hormone (GnIH) is an RFamide peptide, and its role in reproduction is well studied from fish to mammals, but very few reports are available about the function of GnIH during larval development. In this study, we examined the GnIH and GnIH receptors (GnIHRs) expression from embryogenesis to adult stage and tissue-specific expression in adult Catla catla using quantitative real-time (qRT) PCR. The qRT PCR analysis of GnIH mRNA during ontogenetic development showed the increasing trend from early developmental stages to the adult stage with the highest expression in 24 months fish. However, the expression of two GnIH receptors, GnIHR1 and GnIHR2 also increased from larval stages to the adults with a peak at 17 days post-hatching, while GnIHR3 showed the higher mRNA expression during embryogenesis and then decreasing gradually. Tissue distribution analysis of GnIH showed the highest mRNA expression of GnIH in the brain, followed by gonads of both the sexes. GnIHR1 and GnIHR2 were also highly expressed in the brain and gonads of both the sexes, while GnIHR3 showed the highest expression in gonads of both the sexes without any expression in the brain. These results suggest that the brain is the primary site of action for GnIH, GnIHR1 and GnIHR2, while gonads for GnIHR3.

  相似文献   

19.
20.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号