首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Caseinolytic (Clp) proteases are widespread energy-dependent proteases; the functional ATP-dependent protease is comprised of multimers of proteolytic and regulatory subunits. Mycobacterium tuberculosis has two ClpP proteolytic subunits (ClpP1 and ClpP2), with both being essential for growth in vitro. ClpP1 and clpP2 are arranged in an apparent operon; we demonstrated that the two genes are co-expressed under normal growth conditions. We identified a single promoter region for the clpP1P2 operon; no promoter was detected upstream of clpP2 demonstrating that independent expression of clpP1 and clpP2 was highly unlikely. Promoter activity was not induced by heat shock or oxidative stress. We identified a regulatory region upstream of the promoter with a consensus sequence matching the ClgR regulator motif; we determined the limits of the region by mutagenesis and confirmed that positive regulation of the promoter occurs in M. tuberculosis. We developed a reporter system to monitor ClpP1 and ClpP2 enzymatic activities based on LacZ incorporating ssrAtag sequences. We showed that whilst both ClpP1 and ClpP2 degrade SsrA-tagged LacZ, ClpP2 (but not ClpP1) degrades untagged proteins. Our data suggest that the two proteolytic subunits display different substrate specificities and therefore have different, but overlapping roles in M. tuberculosis.  相似文献   

3.
4.
5.
Five clpP genes have been identified in Streptomyces coelicolor. The clpP1 and clpP2 genes form one operon, the clpP3 and clpP4 genes form another, and clpP5 is monocistronic. Previous studies in Streptomyces lividans have shown that the first operon (clpP1 clpP2) is required for a normal cell cycle. Expression of the second operon (clpP3 clpP4) is activated by PopR if the first operon is nonfunctional. We show here that PopR degradation is primarily dependent on ClpP1 and ClpP2, but can also be achieved by ClpP3 and ClpP4. The carboxy-terminus of PopR plays an essential part in the degradation process. Indeed, replacement of the last two alanine residues by aspartate residues greatly increased PopR stability. These substitutions did not impair PopR activity and, as expected, accumulation of the mutant form of PopR led to very strong expression of the clpP3 clpP4 operon. Increased PopR levels led to delayed sporulation. The results obtained in this study support the notion of cross-processing between ClpP1 and ClpP2.  相似文献   

6.
7.
8.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   

9.
10.
ClpP functions as the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. We have cloned a clpP gene, designated clpP1, from the cyanobacterium Synechococcus sp. PCC 7942. The monocistronic 591 bp gene codes for a protein 80% similar to one of four putative ClpP proteins in another cyanobacterium, Synechocystis sp. PCC 6803. The constitutive ClpP1 content in Synechococcus cultures was not inducible by high temperatures, but it did rise fivefold with increasing growth light from 50 to 175 µmol photons m-2 s-1. A clpP1 inactivation strain (clpP1) exhibited slower growth rates, especially at the higher irradiances, and changes in the proportion of the photosynthetic pigments, chlorophyll a and phycocyanin. Many mutant cells (ca. 35%) were also severely elongated, up to 20 times longer than the wild type. The stress phenotype of clpP1 when grown at high light was confirmed by the induction of known stress proteins, such as the heat shock protein GroEL and the alternate form of PSII reaction center D1 protein, D1 form 2. ClpP1 content also rose significantly during short-term photoinhibition, but its loss in clpP1 did not exacerbate the extent of inactivation of photosynthesis, nor affect the inducible D1 exchange mechanism, indicating ClpP1 is not directly involved in D1 protein turnover.  相似文献   

11.
12.
13.
14.
15.
16.
17.
In Chlamydomonas reinhardtii, the clpP1 chloroplast gene encoding one of the catalytic subunits of the ClpP protease complex contains a large in-frame insertion sequence (IS1). Based on the Escherichia coli ClpP structure, IS1 is predicted to protrude at the apical surface of the complex, likely influencing the interaction of the catalytic core with ClpC/HSP100 chaperones. Immunoblotting with an anti-ClpP1 antibody detected two immunoreactive forms of ClpP1: ClpP1H (59 kDa) and ClpP1L (25 kDa). It has been proposed that IS1 is a new type of protein intron (different from inteins). By studying transformants harboring mutations at the predicted borders of IS1 and tags at the C terminus of ClpP1 (tandem affinity purification tag, His tag, Strep·Tag) or within the IS1 sequence (3-hemagglutinin tag), we show that IS1 is not a protein intron and that ClpP1L results from endoproteolytic cleavage inside IS1. Processing sites have been identified in the middle of IS1 and near its C terminus. The sites can be mutated without abolishing processing.Clp proteases are self-compartmentalized serine proteases present in most eubacteria and, as a consequence of endosymbiotic events, in the mitochondrion and chloroplast of eukaryotes. In Escherichia coli, the organism in which they have been best characterized, Clp proteases associate a homo-oligomeric peptidase (ClpP) and a chaperone (ClpA or ClpX) that belongs to the Clp/HSP100 family, itself part of the large group of AAA+ ATPases (14). ClpP is composed of 14 identical subunits arranged in two heptameric rings related by central symmetry. They form a barrel-like structure with the 14 active sites facing an inner proteolytic chamber (5). ClpP alone is able to degrade only small peptides (6), and the recognition and unfolding of protein substrates are carried out by the Clp/HSP100 chaperone. The chaperone docks on the apical surfaces of ClpP and uses ATP hydrolysis to unfold and feed substrates through the ClpP axial pore into the proteolytic chamber (710).In chloroplasts, ClpP is present as a hetero-oligomer associating up to eight different types of subunit. This is the result of a gene diversification process that has begun in cyanobacteria and continues in the chloroplast of land plants. Not only has the number of clpP genes grown, but clpR genes have appeared that carry mutations in at least one residue of the catalytic triad and are thus presumed catalytically inactive. In the green alga Chlamydomonas reinhardtii, three clpP genes (clpP1, CLPP4, and CLPP5) and five clpR genes (CLPR1–CLPR4 and CLPR6) code for the subunits of the chloroplast ClpP complex (11). An additional CLPP2 gene codes for the homo-oligomeric mitochondrial ClpP.ClpP1 is the only subunit that is encoded in the chloroplast and probably the best conserved. In C. reinhardtii, clpP1 contains a large insertion sequence (IS1)3 translated in-frame with the conserved N- and C-terminal regions. This results in a protein about twice as large (∼59 kDa) as in other organisms. Chlamydomonas ClpP1 can be divided into two sequence domains, SD1 and SD2 (the latter containing the catalytic residues), corresponding to the conserved sequence, and one insertion sequence, IS1 (12). In C. reinhardtii, antisera raised against the entire open reading frame (ORF) recognize two products of clpP1 in Western blot: ClpP1H (59 kDa) and ClpP1L (21 kDa) (13). As the clpP1 mRNA does not undergo splicing (12), it has been proposed that IS1 could be a protein intron. Protein introns such as inteins (14) are defined as in-frame intervening sequences that disrupt a host gene and are post-translationally excised by a self-catalytic mechanism. In the case of clpP1, ClpP1H would be the precursor protein and ClpP1L the spliced form. However, IS1 lacks the sequence motifs characteristic of inteins. In addition, both ClpP1L and ClpP1H are stable, and both associate in the 540-kDa ClpP complex (11). Thus, if IS1 were a protein intron, it would be an unusual type. In the related species Chlamydomonas eugametos, clpP1 contains, in addition to IS1, another insertion sequence (IS2) displaying most of the sequence features of inteins. Indeed, IS2 can be induced to self-splice in E. coli by changing a single residue (15).In this study, we show that IS1 is not a protein intron and that ClpP1L is the product of a complex proteolytic maturation of ClpP1H. We have found similar insertion sequences in the clpP1 genes of other green algae from the group Chlorophyceae. Green algae accumulate such insertion sequences in many of their chloroplast genes, probably as a result of a high frequency of genome rearrangements.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号