共查询到20条相似文献,搜索用时 9 毫秒
1.
von Arnim CA Kinoshita A Peltan ID Tangredi MM Herl L Lee BM Spoelgen R Hshieh TT Ranganathan S Battey FD Liu CX Bacskai BJ Sever S Irizarry MC Strickland DK Hyman BT 《The Journal of biological chemistry》2005,280(18):17777-17785
BACE is a transmembrane protease with beta-secretase activity that cleaves the amyloid precursor protein (APP). After BACE cleavage, APP becomes a substrate for gamma-secretase, leading to release of amyloid-beta peptide (Abeta), which accumulates in senile plaques in Alzheimer disease. APP and BACE are co-internalized from the cell surface to early endosomes. APP is also known to interact at the cell surface and be internalized by the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic and signaling receptor. Using a new fluorescence resonance energy transfer (FRET)-based assay of protein proximity, fluorescence lifetime imaging (FLIM), and co-immunoprecipitation we demonstrate that the light chain of LRP interacts with BACE on the cell surface in association with lipid rafts. Surprisingly, the BACE-LRP interaction leads to an increase in LRP C-terminal fragment, release of secreted LRP in the media and subsequent release of the LRP intracellular domain from the membrane. Taken together, these data suggest that there is a close interaction between BACE and LRP on the cell surface, and that LRP is a novel BACE substrate. 相似文献
2.
The low density lipoprotein receptor-related protein 1 (LRP1) has been implicated in intracellular signaling functions as well as in lipid metabolism. Recent in vivo and in vitro studies suggest that LRP1 is a physiological modulator of the platelet-derived growth factor (PDGF) signaling pathway. Here we show that in mouse fibroblasts LRP1 modulates PDGF-BB signaling by controlling endocytosis and ligand-induced down-regulation of the PDGF receptor beta (PDGFRbeta). In LRP1-deficient fibroblasts, basal PDGFRbeta tyrosine kinase activity was derepressed, and PDGF-BB-induced endocytosis and degradation of PDGFRbeta were accelerated as compared with control cells. This was accompanied by rapid uptake of receptor-bound PDGF-BB into the cells and by attenuated ERK activation in response to PDGF-BB stimulation. Pulse-chase analysis indicated that the steady-state turnover rate of PDGFRbeta was also accelerated in LRP-deficient fibroblasts. The rapid degradation of PDGFRbeta in the LRP1-deficient fibroblasts was prevented by MG132 and chloroquine. Furthermore, the association of PDGFRbeta with c-Cbl, a ubiquitin E3-ligase, as well as the ligand-induced ubiquitination of PDGFRbeta were increased in LRP1-deficient fibroblasts. We show that LRP1 can directly interact with c-Cbl, suggesting a Sprouty-like role for LRP1 in regulating the access of the PDGFRbeta to the ubiquitination machinery. Thus, LRP1 modulates PDGF signaling by controlling ubiquitination and endocytosis of the PDGFRbeta. 相似文献
3.
Takayama Y Takahashi H Mizumachi K Takezawa T 《The Journal of biological chemistry》2003,278(24):22112-22118
Fibroblasts plated on a type I collagen gel can reduce the size of the gel in a way that mimics the reorganization of the collagen matrix that accompanies the wound healing process. We demonstrated previously that lactoferrin (Lf) specifically binds to WI-38 human fibroblasts and enhances their collagen gel contractile activity. The effect of Lf correlated with the phosphorylation of myosin light chain (MLC), suggesting that Lf promotes fibroblast contractile activity by regulating MLC phosphorylation. We found here that the binding of Lf to WI-38 cells was inhibited by recombinant receptor-associated protein (RAP), a universal competitor for ligand binding to LRP (LDL receptor-related protein), and RAP can also promote the collagen gel contractile activity. These observations suggest that LRP is a receptor that mediates the Lf-induced enhancement of collagen gel contractile activity in WI-38 fibroblasts. To confirm the hypothesis, we utilized LRP antisense oligonucleotide, which was modified by morpholino linkage. Suppression of LRP expression abrogated the Lf-induced enhancement the contractile activity in fibroblasts. Treatment of fibroblasts with Lf enhanced the phosphorylation of ERK1/2 and the activation of MLC kinase (MLCK). These effects were attenuated by suppression of LRP expression. These findings suggest that LRP is involved in the Lf-enhanced collagen gel contractile activity of WI-38 fibroblasts by converting the Lf binding signal into the activation of ERK1/2 and MLCK. 相似文献
4.
Lleó A Waldron E von Arnim CA Herl L Tangredi MM Peltan ID Strickland DK Koo EH Hyman BT Pietrzik CU Berezovska O 《The Journal of biological chemistry》2005,280(29):27303-27309
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and the Notch receptor. Recently, the low density receptor-related protein (LRP) has been shown to be cleaved by a gamma-secretase-like activity. We postulated that LRP may interact with PS1 and tested its role as a competitive substrate for gamma-secretase. In this report we show that LRP colocalizes and interacts with endogenous PS1 using coimmunoprecipitation and fluorescence lifetime imaging microscopy. In addition, we found that gamma-secretase active site inhibitors do not disrupt the interaction between LRP and PS1, suggesting that the substrate associates with a gamma-secretase docking site located in close proximity to PS1. This is analogous to APP-gamma-secretase interactions. Finally, we show that LRP competes with APP for gamma-secretase activity. Overexpression of a truncated LRP construct consisting of the C terminus, the transmembrane domain, and a short extracellular portion leads to a reduction in the levels of the Abeta40, Abeta42, and p3 peptides without changing the total level of APP expression. In addition, transfection with the beta-chain of LRP causes an increase in uncleaved APP C-terminal fragments and a concomitant decrease in the signaling effects of the APP intracellular domain. In conclusion, LRP is a PS1 interactor and can compete with APP for gamma-secretase enzymatic activity. 相似文献
5.
Identification of the low density lipoprotein receptor-related protein (LRP) as an endocytic receptor for thrombospondin-1 总被引:2,自引:1,他引:2 下载免费PDF全文
《The Journal of cell biology》1995,129(5):1403-1410
Thrombospondin-1 (TSP1) has potent biological effects on vasculature smooth muscle cells (SMCs) and endothelial cells. The regulation of extracellular accumulation of TSP1 is mediated by a previously obscure process of endocytosis which leads to its lysosomal degradation. Since members of the low density lipoprotein receptor (LDLR) family have been found to mediate endocytosis which leads to degradation of a diverse array of ligands, we evaluated their possible role in the uptake and degradation of TSP1 by vascular SMCs, endothelial-cells and fibroblasts. 125I-TSP1 was found to be internalized and degraded lysosomally by all these cell types. Both the internalization and degradation of 125I-TSP1 could be inhibited by a specific antagonist of the LDLR family, the 39-kD receptor-associated protein (RAP). Antibodies to the LDLR-related protein (LRP) completely blocked the uptake and degradation of 125I-TSP1 in SMCs and fibroblasts but not endothelial cells. Solid-phase binding assays confirmed that LRP bound to TSP1 and that the interaction was of high affinity (Kd = 5 nM). Neither RAP nor LRP antibodies inhibited the binding of 125I-TSP1 to surfaces of SMCs. However, cell surface binding, as well as, endocytosis and degradation could be blocked by heparin or by pre- treatment of the cells with either heparitinase, chondroitinase or beta- D-xyloside. The data indicates that cell surface proteoglycans are involved in the LRP-mediated clearance of TSP1. A model for the clearance of TSP1 by these cells is that TSP1 bound to proteoglycans is presented to LRP for endocytosis. In endothelial cells, however, the internalization of TSP1 was not mediated by LRP but since RAP inhibited TSP1 uptake and degradation, we postulate that another member of the LDLR family is likely to be involved. 相似文献
6.
Proteinase-activated receptor 2 (PAR(2)), a 7-transmembrane G protein-coupled receptor, contributes to inflammation either positively or negatively in different experimental systems. Previously, we reported that concurrent activation of PAR(2) and TLRs in human lung and colonic epithelial cells resulted in a synergistic increase in NF-κB-mediated gene expression, but a down-regulation of IRF-3-mediated gene expression. In this study, the effect of PAR(2) activation on LPS-induced TLR4 signaling was examined in primary murine macrophages. The PAR(2) activation of wild-type macrophages enhanced LPS-induced expression of the anti-inflammatory cytokine, IL-10, while suppressing gene expression of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12. Similar PAR(2)-mediated effects on LPS-stimulated IL-10 and IL-12 mRNA were also observed in vivo. In contrast, PAR 2-/- macrophages exhibited diminished LPS-induced IL-10 mRNA and protein expression and downstream STAT3 activation, but increased KC mRNA and protein. PAR(2) activation also enhanced both rIL-4- and LPS-induced secretion of IL-4 and IL-13, and mRNA expression of alternatively activated macrophage (AA-M) markers, e.g. arginase-1, mannose receptor, Ym-1. Thus, in the context of a potent inflammatory stimulus like LPS, PAR(2) activation acts to re-establish tissue homeostasis by dampening the production of inflammatory mediators and causing the differentiation of macrophages that may contribute to the development of a Th2 response. 相似文献
7.
8.
The low-density Lipoprotein receptor-related protein (LRP) is a 4544-amino-acid membrane protein which closely resembles the LDL receptor in its arrangement of cysteine-rich motifs. Binding studies have suggested that one function of the molecule is as a receptor for ligands containing apolipoprotein E. We present here the sequence and structure of the promoter region of the LRP. These data show that the LRP contains no sterol regulatory element, and is not down-regulated by sterols like the LDL receptor. This lends further support to the identity of the LRP as a chylomicron remnant receptor. 相似文献
9.
Newton CS Loukinova E Mikhailenko I Ranganathan S Gao Y Haudenschild C Strickland DK 《The Journal of biological chemistry》2005,280(30):27872-27878
Activation of the platelet-derived growth factor receptor-beta (PDGFR-beta) leads to tyrosine phosphorylation of the cytoplasmic domain of LRP and alters its association with adaptor and signaling proteins, such as Shc. The mechanism of the PDGF-induced LRP tyrosine phosphorylation is not well understood, especially since PDGF not only activates PDGF receptor but also binds directly to LRP. To gain insight into this mechanism, we used a chimeric receptor in which the ligand binding domain of the PDGFR-beta was replaced with that from the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase of the same subfamily, but with different ligand specificity. Activation of the chimeric receptor upon the addition of M-CSF readily mediated the tyrosine phosphorylation of LRP. Since M-CSF is not recognized by LRP, these results indicated that growth factor binding to LRP is not necessary for this phosphorylation event. Using a panel of cytoplasmic domain mutants of the chimeric M-CSF/PDGFR-beta, we confirmed that the kinase domain of PDGFR-beta is absolutely required for LRP tyrosine phosphorylation but that PDGFR-beta-mediated activation of phosphatidylinositol 3-kinase, RasGAP, SHP-2, phospholipase C-gamma, and Src are not necessary for LRP tyrosine phosphorylation. To identify the cellular compartment where LRP and the PDGFR-beta may interact, we employed immunofluorescence and immunogold electron microscopy. In WI-38 fibroblasts, these two receptors co-localized in coated pits and endosomal compartments following PDGF stimulation. Further, phosphorylated forms of the PDGFR-beta co-immunoprecipitated with LRP following PDGF treatment. Together, these studies revealed close association between activated PDGFR-beta and LRP, suggesting that LRP functions as a co-receptor capable of modulating the signal transduction pathways initiated by the PDGF receptor from endosomes. 相似文献
10.
Laatsch A Ragozin S Grewal T Beisiegel U Joerg H 《European journal of cell biology》2004,83(3):113-120
The interpretation of experiments involving the overexpression of a recombinant cDNA is often hampered by the interference of mRNA expression from the endogenous gene locus. Unless cell lines from naturally occurring mutations or knockout mice are available, difficult and time-consuming gene targeting techniques are required to inhibit endogenous gene expression. Using a method we refer to as "differential RNA interference" we demonstrate that RNA interference can be used to selectively suppress endogenous gene expression without affecting the expression of a co-transfected recombinant version of the same protein. Functional analyses of recombinant low density lipoprotein receptor-related protein (LRP) to study its involvement in lipid metabolism have been shown to be extremely difficult due to its large cDNA and the unavailability of suitable LRP-deficient cell lines. We constructed an expression vector containing the full-length coding sequence of human LRP fused to EGFP and a vector expressing small hairpin RNA directed against the 3'-untranslated region of the wild-type human LRP mRNA (LRP-shRNA). When overexpressed, EGFP-tagged LRP colocalizes with endogenous LRP and stimulates the uptake of LRP ligands. Overexpression of LRP-shRNA vectors significantly inhibits LRP expression, as judged by quantitative RT-PCR, Western blot and immunofluorescence analysis, and it dramatically decreases receptor-associated protein (RAP) uptake. Finally, co-transfection of EGFP-LRP and LRP-shRNA vectors demonstrates selective inhibition of endogenous LRP expression without affecting simultaneous expression of recombinant LRP protein. Thus, utilization of "differential RNA interference" provides a new experimental approach to selectively study the function of any recombinant protein in any given cell line without interference of endogenous protein expression. 相似文献
11.
PrP(C) (cellular prion protein) is located at the surface of neuronal cells in detergent-insoluble lipid rafts, yet is internalized by clathrin-dependent endocytosis. As PrP(C) is glycosyl-phosphatidylinositol-anchored, it requires a transmembrane adaptor protein to connect it to the clathrin endocytosis machinery. Using receptor-associated protein and small interfering RNA against particular LDL (low-density lipoprotein) family members, in combination with immunofluorescence microscopy and surface biotinylation assays, we show that the transmembrane LRP1 (LDL receptor-related protein 1) is required for the Cu(2+)-mediated endocytosis of PrP(C) in neuronal cells. We show also that another LRP1 ligand that can cause neurodegenerative disease, the Alzheimer's amyloid precursor protein, does not modulate the endocytosis of PrP(C). 相似文献
12.
Rozanov DV Hahn-Dantona E Strickland DK Strongin AY 《The Journal of biological chemistry》2004,279(6):4260-4268
We demonstrate that the presentation of LRP and the subsequent uptake of its ligands by malignant cells are both strongly regulated by MT1-MMP. Because LRP is essential for the clearance of multiple ligands, these findings have important implications for many pathophysiological processes including the pericellular proteolysis in neoplastic cells as well as the fate of the soluble matrix-degrading proteases such as MMP-2. MT1-MMP is a key protease in cell invasion and a physiological activator of MMP-2. Cellular LRP consists of a non-covalently associated 515-kDa extracellular alpha-chain (LRP-515) and an 85-kDa membrane-spanning beta-chain, and plays a dual role as a multifunctional endocytic receptor and a signaling molecule. Through the capture and uptake of several soluble proteases, LRP is involved in the regulation of matrix proteolysis. LRP-515 associates with the MT1-MMP catalytic domain and is highly susceptible to MT1-MMP proteolysis in vitro. Similar to MT1-MMP, the metalloproteinases MT2-MMP, MT3-MMP and MT4-MMP also degrade LRP. The N-terminal and C-terminal parts of the LRP-515 subunit are resistant and susceptible, respectively, to MT1-MMP proteolysis. In cells co-expressing LRP and MT1-MMP, the proteolytically competent protease decreases the levels of cellular LRP and releases its N-terminal portion in the extracellular milieu while the catalytically inert protease co-precipitates with LRP. These events implicate MT1-MMP, not only in the activation of MMP-2, but also in the mechanisms that control the subsequent fate of MMP-2 in cells and tissues. 相似文献
13.
Ranganathan S Cao C Catania J Migliorini M Zhang L Strickland DK 《The Journal of biological chemistry》2011,286(35):30535-30541
The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that controls macrophage migration in part by interacting with β(2) integrin receptors. However, the molecular mechanism underlying LRP1 integrin recognition is poorly understood. Here, we report that LRP1 specifically recognizes α(M)β(2) but not its homologous receptor α(L)β(2). The interaction between these two cellular receptors in macrophages is significantly enhanced upon α(M)β(2) activation by LPS and is mediated by multiple regions in both LRP1 and α(M)β(2). Specifically, we find that both the heavy and light chains of LRP1 are involved in α(M)β(2) binding. Within the heavy chain, the binding is mediated primarily via the second and fourth ligand binding repeats. For α(M)β(2), we find that the α(M)-I domain represents a major LRP1 recognition site. Indeed, substitution of the I domain of the α(L)β(2) receptor with that of α(M) confers the α(L)β(2) receptor with the ability to interact with LRP1. Furthermore, we show that residues (160)EQLKKSKTL(170) within the α(M)-I domain represent a major LRP1 recognition site. Given that perturbation of this specific sequence leads to altered adhesive activity of α(M)β(2), our finding suggests that binding of LRP1 to α(M)β(2) could alter integrin function. Indeed, we further demonstrate that the soluble form of LRP1 (sLRP1) inhibits α(M)β(2)-mediated adhesion of cells to fibrinogen. These studies suggest that sLRP1 may attenuate inflammation by modulating integrin function. 相似文献
14.
Liu W Singh R Choi CS Lee HY Keramati AR Samuel VT Lifton RP Shulman GI Mani A 《The Journal of biological chemistry》2012,287(10):7213-7223
Body fat, insulin resistance, and type 2 diabetes are often linked together, but the molecular mechanisms that unify their association are poorly understood. Wnt signaling regulates adipogenesis, and its altered activity has been implicated in the pathogenesis of type 2 diabetes and metabolic syndrome. LRP6(+/-) mice on a high fat diet were protected against diet-induced obesity and hepatic and adipose tissue insulin resistance compared with their wild-type (WT) littermates. Brown adipose tissue insulin sensitivity and reduced adiposity of LRP6(+/-) mice were accounted for by diminished Wnt-dependent mTORC1 activity and enhanced expression of brown adipose tissue PGC1-α and UCP1. LRP6(+/-) mice also exhibited reduced endogenous hepatic glucose output, which was due to diminished FoxO1-dependent expression of the key gluconeogenic enzyme glucose-6-phosphatase (G6pase). In addition, in vivo and in vitro studies showed that loss of LRP6 allele is associated with increased leptin receptor expression, which is a likely cause of hepatic insulin sensitivity in LRP6(+/-) mice. Our study identifies LRP6 as a nutrient-sensitive regulator of body weight and glucose metabolism and as a potential target for pharmacological interventions in obesity and diabetes. 相似文献
15.
Martin Steffl Markus Schweiger Werner M. Amselgruber 《Journal of molecular histology》2013,44(3):285-290
The low density lipoprotein (LDL) receptor-related protein-1 (LRP1), also known as α2macroglobulin receptor or CD 91, is a multifunctional cell surface receptor that plays an important role in the endocytosis of several ligands and regulation of signalling pathways. In human endometrium, LRP1 was shown to be involved in the endocytic clearance of specific matrix metalloproteinases (MMPs) from the stroma during different phases of the cycle. However, in the pig, it is currently not known whether LRP1 is actually expressed in the endometrium and functions in a similar manner, respectively. For that reason, we examined the localization of LRP1 in the porcine endometrium at different stages of the estrous cycle and pregnancy by immunohistochemistry. Our results showed that LRP1 immunostaining is found in all endometrial specimens examined of both cyclic and pregnant animals. Especially in metestrus and estrus, immunoreactivity (IR) of LRP1 was strongly detected in stromal cells underlying the luminal epithelium (LE). Endometrial glands were mostly surrounded by LRP1-positive cells, which showed some concomitant staining with an antibody against porcine macrophages. In pregnant animals, the number of LRP1-positively stained cells was comparable high within the subepithelial stroma of early pregnant pigs. During apposition and implantation, IR of LRP1 remained high in stromal cells of the endometrium and declined markedly during the ongoing pregnancy stages examined. Our data show, that endometrial LRP1 protein expression was specifically high in such cyclic and pregnancy stages which have a high tissue remodelling activity in dependence of differing steroid hormone concentrations. 相似文献
16.
Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. 总被引:23,自引:0,他引:23 下载免费PDF全文
The low density lipoprotein receptor-related protein (LRP) is a cell surface glycoprotein that binds and transports plasma lipoproteins enriched in apolipoprotein E. It is synthesized in the endoplasmic reticulum as a transmembrane glycosylated precursor that migrates with an apparent molecular mass of about 600 kd on SDS-polyacrylamide gels. After it reaches the Golgi complex, the protein is cleaved to generate two subunits with apparent molecular masses of approximately 515 and 85 kd respectively. The larger NH2-terminal alpha-subunit lacks a membrane-spanning region. It remains attached to the membrane through noncovalent association with the smaller COOH-terminal beta-subunit. Proteolysis occurs at the sequence RHRR, which resembles the sequence RKRR at the proteolytic site in the receptors for insulin and insulin-like growth factor-1 (IGF-1), the only other cell surface receptors known to undergo proteolytic processing. Proteolysis of LRP occurs coincident with the conversion of the N-linked carbohydrates to the mature endoglycosidase H-resistant, neuraminidase-sensitive form. Proteolysis is prevented by brefeldin A, which blocks transport to the Golgi complex. These data raise the possibility that LRP and the receptors for insulin and IGF-1 are processed by a specific endoprotease that recognizes protein with extended basic sequences and resides in the trans-Golgi complex or in post-Golgi vesicles of the constitutive secretory pathway. 相似文献
17.
Peltan ID Thomas AV Mikhailenko I Strickland DK Hyman BT von Arnim CA 《Biochemical and biophysical research communications》2006,349(1):24-30
The low-density lipoprotein receptor-related protein (LRP) is a large, endocytic receptor involved in intracellular signalling. LRP acts as a co-receptor with the PDGF-receptor (PDGF-r) for platelet-derived growth factor (PDGF). PDGF-r and Src-kinases induce tyrosine-phosphorylation of LRP. We used fluorescence lifetime imaging microscopy (FLIM) to specifically detect LRP phosphorylation, measure its extent and localization in intact cells, and assess its effects upon LRP-APP interaction. Robust phosphorylation of LRP throughout the cell was observed after overexpression of Src-kinase. This depended on LRP's distal NPXY domain. By contrast, activation of the PDGF-r resulted in phosphorylation of the subpopulation of LRP at or near the cell surface. PDGF activation triggered phosphorylation of endogenous LRP in primary neurons. LRP is also a trafficking receptor for the Alzheimer-related molecule amyloid-precursor-protein (APP). PDGF stimulation did not affect LRP-APP interactions. This approach allows exquisite subcellular resolution of specific LRP post-translational changes and protein-protein interactions of endogenous proteins in intact cells. 相似文献
18.
Salicioni AM Gaultier A Brownlee C Cheezum MK Gonias SL 《The Journal of biological chemistry》2004,279(11):10005-10012
Low density lipoprotein receptor-related protein-1 (LRP-1) mediates the endocytosis of multiple plasma membrane proteins and thereby models the composition of the cell surface. LRP-1 also functions as a catabolic receptor for fibronectin, limiting fibronectin accumulation in association with cells. The goal of the present study was to determine whether LRP-1 regulates cell surface levels of the beta(1) integrin subunit. We hypothesized that LRP-1 may down-regulate cell surface beta(1) by promoting its internalization; however, unexpectedly, LRP-1 expression was associated with a substantial increase in cell surface beta(1) integrin in two separate cell lines, murine embryonic fibroblasts (MEFs) and CHO cells. The total amount of beta(1) integrin was unchanged because LRP-1-deficient cells retained increased amounts of beta(1) in the endoplasmic reticulum (ER). Expression of human LRP-1 in LRP-1-deficient MEFs reversed the shift in subcellular beta(1) integrin distribution. Metabolic labeling experiments demonstrated that the precursor form of newly synthesized beta(1) integrin (p105) is converted into mature beta(1) (p125) more slowly in LRP-1-deficient cells. Although low levels of cell surface beta(1) integrin, in LRP-1-deficient MEFs, were associated with decreased adhesion to fibronectin, the subcellular distribution of beta(1) integrin was most profoundly dependent on LRP-1 only after the cell cultures became confluent. A mutagen-treated CHO cell line, in which LRP-1 is expressed but retained in the secretory pathway, also demonstrated nearly complete ER retention of beta(1) integrin. These studies support a model in which LRP-1 either directly or indirectly promotes maturation of beta(1) integrin precursor and thereby increases the level of beta(1) integrin at the cell surface. 相似文献
19.
Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). 下载免费PDF全文
T Hiesberger S Hüttler A Rohlmann W Schneider K Sandhoff J Herz 《The EMBO journal》1998,17(16):4617-4625
Sphingolipid activator proteins SAP-A, -B, -C and -D (also called saposins) are generated by proteolytic processing from a 73 kDa precursor and function as obligatory activators of lysosomal enzymes involved in glycosphingolipid metabolism. Although the SAP precursor can be recognized by the mannose-6-phosphate (M-6-P) receptor and shuttled directly from the secretory pathway to the lysosome, a substantial fraction of newly synthesized precursor is secreted from the cell where it may participate in sphingolipid transport and signaling events. Re-uptake of the secreted precursor is mediated by high-affinity cell surface receptors that are apparently distinct from the M-6-P receptor. We found that the low density lipoprotein receptor-related protein (LRP), a multifunctional endocytic receptor that is expressed on most cells, can mediate cellular uptake and lysosomal delivery of SAP precursor. Additional in vivo experiments in mice revealed that the mannose receptor system on macrophages also participates in precursor internalization. We conclude that SAP precursor gains entry into cells by at least three independent receptor mechanisms including the M-6-P receptor, the mannose receptor and LRP. 相似文献