首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to a decrease in airway O2 tension, but the underlying mechanism is incompletely understood. We studied the contribution of glucose-6-phosphate dehydrogenase (Glc-6-PD), an important regulator of NADPH redox and production of reactive oxygen species, to the development of HPV. We found that hypoxia (95% N2, 5% CO2) increased contraction of bovine pulmonary artery (PA) precontracted with KCl or serotonin. Depletion of extracellular glucose reduced NADPH, NADH, and HPV, substantiating the idea that glucose metabolism and Glc-6-PD play roles in the response of PA to hypoxia. Our data also show that inhibition of glycolysis and mitochondrial respiration (indicated by an increase in NAD+ and decrease in the ATP-to-ADP ratio) by hypoxia, or by inhibitors of pyruvate dehydrogenase or electron transport chain complexes I or III, increased generation of reactive oxygen species, which in turn activated Glc-6-PD. Inhibition of Glc-6-PD decreased Ca2+ sensitivity to the myofilaments and diminished Ca2+-independent and -dependent myosin light chain phosphorylation otherwise increased by hypoxia. Silencing Glc-6-PD expression in PA using a targeted small interfering RNA abolished HPV and decreased extracellular Ca2+-dependent PA contraction increased by hypoxia. Similarly, Glc-6-PD expression and activity were significantly reduced in lungs from Glc-6-PDmut(−/−) mice, and there was a corresponding reduction in HPV. Finally, regression analysis relating Glc-6-PD activity and the NADPH-to-NADP+ ratio to the HPV response clearly indicated a positive linear relationship between Glc-6-PD activity and HPV. Based on these findings, we propose that Glc-6-PD and NADPH redox are crucially involved in the mechanism of HPV and, in turn, may play a key role in increasing pulmonary arterial pressure, which is involved in the development of pulmonary hypertension.  相似文献   

2.
3.
Our previous work has demonstrated that the cellular phenotype changes of human pulmonary artery smooth muscle cells (PASMCs) play an important role during pulmonary vascular remodelling. However, little is known about the role of PASMCs phenotype modulation in the course of hypoxia-induced migration and its behind molecular mechanisms. In this study, we have shown that cGMP-dependent protein kinase (PKG) Iα transfection significantly attenuated the hypoxia-induced down-regulation of the expressions of SM-α-actin, MHC and calponin. Hypoxia-induced PASMC migration was also suppressed by PKGIα overexpression. Furthermore, this overexpression attenuated ANX A1 upregulation under hypoxic conditions. All those effects were reversed by a PKG inhibitor KT5823. Our data indicate that manipulating upstream entity e.g., PKGIa, may have a potential therapeutic value to prevent hypoxia-associated pulmonary arterial remodeling for pulmonary hypertension development.  相似文献   

4.
Chronic hypoxia-induced pulmonary hypertension results partly from proliferation of smooth muscle cells in small peripheral pulmonary arteries. Previously, we demonstrated that hypoxia modulates the proliferation of human peripheral pulmonary artery smooth muscle cells (PASMCs) by induction of cyclooxygenase-2 (COX-2) and production of antiproliferative prostaglandins. The transforming growth factor (TGF)-beta superfamily plays a critical role in the regulation of pulmonary vascular remodeling, although to date an interaction with hypoxia has not been examined. We therefore investigated the pathways involved in the hypoxic induction of COX-2 in peripheral PASMCs and the contribution of TGF-beta1 and bone morphogenetic protein (BMP)-4 in this response. In the present study, we demonstrate that hypoxia induces activation of p38MAPK, ERK1/2, and Akt in PASMCs and that these pathways are involved in the hypoxic regulation of COX-2. Whereas inhibition of p38(MAPK) or ERK1/2 activity suppressed hypoxic induction of COX-2, inhibition of the phosphoinositide 3-kinase pathway enhanced hypoxic induction of COX-2. Furthermore, exogenous TGF-beta1 induced COX-2 mRNA and protein expression, and our findings demonstrate that release of TGF-beta1 by PASMCs during hypoxia contributes to the hypoxic induction of COX-2 via the p38MAPK pathway. In contrast, BMP-4 inhibited the hypoxic induction of COX-2 by an MAPK-independent pathway. Together, these findings suggest that the TGF-beta superfamily is part of an autocrine/paracrine system involved in the regulation of COX-2 expression in the distal pulmonary circulation, and this modulates hypoxia-induced pulmonary vascular cell proliferation.  相似文献   

5.
The molecular mechanisms underlying hypoxic responses in pulmonary and systemic arteries remain obscure. Here we for the first time report that acute hypoxia significantly increased total PKC and PKCepsilon activity in pulmonary, but not mesenteric arteries, while these two tissues showed comparable PKCepsilon protein expression and activation by the PKC activator phorbol 12-myristate 13-acetate. Hypoxia induced an increase in intracellular reactive oxygen species (ROS) generation in isolated pulmonary artery smooth muscle cells (PASMCs), but not in mesenteric artery SMCs. Inhibition of mitochondrial ROS generation with rotenone, myxothiazol, or glutathione peroxidase-1 overexpression prevented hypoxia-induced increases in total PKC and PKCepsilon activity in pulmonary arteries. The inhibitory effects of rotenone were reversed by exogenous hydrogen peroxide. A PKCepsilon translocation peptide inhibitor or PKCepsilon gene deletion decreased hypoxic increase in [Ca(2+)](i) in PASMCs, whereas the conventional PKC inhibitor GO6976 had no effect. These data suggest that acute hypoxia may specifically increase mitochondrial ROS generation, which subsequently activates PKC, particularly PKCepsilon, contributing to hypoxia-induced increase in [Ca(2+)](i) and contraction in PASMCs.  相似文献   

6.
We have shown that the specific inhibition of hypoxia-induced relaxation by organ culture in porcine coronary arteries can be mimicked by treatment of control vessels with the protein synthesis inhibitor, cycloheximide. We hypothesize that organ culture of vascular smooth muscle results in the decreased expression of proteins that are critical for vascular oxygen sensing. Using two-dimensional gel electrophoresis and mass spectroscopy, we identified such candidate proteins. The expressions of the smooth muscle-specific protein, SM22, and tropomyosin are decreased after 24 h in organ culture. These results were confirmed by Western blot analysis. Other smooth muscle proteins (actin and calponin) exhibited little change. We also demonstrate a 50% downregulation in the small G protein, Rho, a potent modulator of Ca(2+)-independent force. These results indicate that organ culture preferentially inhibits the expression of certain smooth muscle proteins. This change in protein expression after organ culture correlates with the specific inhibition of hypoxic vasorelaxation. These results provide novel target pathways for investigation that are potentially important for vascular oxygen sensing.  相似文献   

7.
Previous studies have demonstrated that hypoxia can induce phenotypic modulation of pulmonary smooth muscle cells; however, the mechanisms remain unclear. The present study aimed to investigate the effect of the GTPase Rab6A-mediated phenotypic modulation and other activities of rat pulmonary artery smooth muscle cells (RPASMCs). We revealed that Rab6A was induced by hypoxia (1% O2) and was involved in a hypoxia-induced phenotypic switch and endoplasmic reticulum stress (ERS) in RPASMCs. After 48 hours of hypoxia, the expression of the phenotype marker protein smooth muscle actin was downregulated and vimentin (VIM) expression was upregulated. Rab6A was upregulated after 48 hours of hypoxia, and the level of glucose-regulated protein, 78 kDa (GRP78) after 12 hours of hypoxic stimulation was also increased. After transfection with a Rab6A short interfering RNA under hypoxic conditions, the expression levels of GRP78 and VIM in RPASMCs were downregulated. Overall, hypoxia-induced RPASMCs to undergo ERS followed by phenotypic transformation. Rab6A is involved in this hypoxia-induced phenotypic modulation and ERS in RPASMCs.  相似文献   

8.
Chronic hypoxia triggers pulmonary vascular remodeling, which is associated with a modulation of the vascular smooth muscle cell (SMC) phenotype from a contractile, differentiated to a synthetic, dedifferentiated state. We previously reported that acute hypoxia represses cGMP-dependent protein kinase (PKG) expression in ovine fetal pulmonary venous SMCs (FPVSMCs). Therefore, we tested if altered expression of PKG could explain SMC phenotype modulation after exposure to hypoxia. Hypoxia-induced reduction in PKG protein expression strongly correlated with the repressed expression of SMC phenotype markers, myosin heavy chain (MHC), calponin, vimentin, alpha-smooth muscle actin (alphaSMA), and thrombospondin (TSP), indicating that hypoxic exposure of SMC induced phenotype modulation to dedifferentiated state, and PKG may be involved in SMC phenotype modulation. PKG-specific small interfering RNA (siRNA) transfection in FPVSMCs significantly attenuated calponin, vimentin, and MHC expression, with no effect on alphaSMA and TSP. Treatment with 30 microM Drosophila Antennapedia (DT-3), a membrane-permeable peptide inhibitor of PKG, attenuated the expression of TSP, MHC, alphaSMA, vimentin, and calponin. The results from PKG siRNA and DT-3 studies indicate that hypoxia-induced reduction in protein expression was also similarly impacted by PKG inhibition. Overexpression of PKG in FPVSMCs by transfection with a full-length PKG construct tagged with green fluorescent fusion protein (PKG-GFP) reversed the effect of hypoxia on the expression of SMC phenotype marker proteins. These results suggest that PKG could be one of the determinants for the expression of SMC phenotype marker proteins and may be involved in the maintenance of the differentiated phenotype in pulmonary vascular SMCs in hypoxia.  相似文献   

9.
Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs). MicroRNAs have been implicated in the regulation of cell proliferation and might be implicated in the etiology of PAH. Data from in vivo and in vitro cell culture models showed that hypoxia inhibits microRNA-30c (miR-30c) expression in PASMCs. Inhibition of miR-30c by either hypoxia or AMO-30c results in PASMC proliferation (cell viability, 5-bromo-2-deoxyuridine (BrdU) incorporation, proliferating cell nuclear antigen, Ki67, and tubulin polymerization) and the inhibition of apoptosis (cell cycle progression, Cyclin A and Cyclin D, and TUNEL staining). Moreover, down-regulation of miR-30c also results in the phenotype switch from contractile to synthetic PASMC (SM22α and Calponin, osteopontin expression, and wound healing assay). In contrast, these effects were reversed by the application of an miR-30c mimetic under hypoxic conditions. Mechanically, miR-30c inhibited the platelet-derived growth factor receptor β (PDGFRβ) expression by directly binding to the 3′ untranslated region of PDGFRβ mRNA (luciferase reporter assays, and PDGFRβ-masking antisense oligodeoxynucleotides). Pharmacological inhibition of PDGFR by AG-1296 displayed similar effects to the miR-30c mimetic. These data suggest that the down-regulation of miR-30c accounts for the up-regulation of PDGFRβ expression, and subsequent activation of PDGF signaling results in the hypoxia-induced PASMC proliferation and phenotype switching. Therefore, increasing miR-30c expression levels could be explored as a potential new therapy for hypoxia-induced PAH.  相似文献   

10.
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10(-5) microM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.  相似文献   

11.
Sustained therapeutic hypercapnia prevents pulmonary hypertension in experimental animals, but its rescue effects on established disease have not been studied. Therapies that inhibit Rho-kinase (ROCK) and/or augment nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling can reverse or prevent progression of chronic pulmonary hypertension. Our objective in the present study was to determine whether sustained rescue treatment with inhaled CO(2) (therapeutic hypercapnia) would improve structural and functional changes of chronic hypoxic pulmonary hypertension. Spontaneously breathing pups were exposed to normoxia (21% O(2)) or hypoxia (13% O(2)) from postnatal days 1-21 with or without 7% CO(2) (Pa(CO(2)) elevated by ~25 mmHg) or 10% CO(2) (Pa(CO(2)) elevated by ~40 mmHg) from days 14 to 21. Compared with hypoxia alone, animals exposed to hypoxia and 10% CO(2) had significantly (P < 0.05) decreased pulmonary vascular resistance, right-ventricular systolic pressure, right-ventricular hypertrophy, and medial wall thickness of pulmonary resistance arteries as well as decreased lung phosphodiesterase (PDE) V, RhoA, and ROCK activity. Rescue treatment with 10% CO(2), or treatment with a ROCK inhibitor (15 mg/kg ip Y-27632 twice daily from days 14 to 21), also increased pulmonary arterial endothelial nitric oxide synthase and lung NO content. In contrast, cGMP content and cGMP-dependent protein kinase (PKG) activity were increased by exposure to 10% CO(2), but not by ROCK inhibition with Y-27632. In vitro exposure of pulmonary artery smooth muscle cells to hypercapnia suppressed serum-induced ROCK activity, which was prevented by inhibition of PKG with Rp-8-Br-PET-cGMPS. We conclude that sustained hypercapnia dose-dependently inhibited ROCK activity, augmented NO-cGMP-PKG signaling, and led to partial improvements in the hemodynamic and structural abnormalities of chronic hypoxic PHT in juvenile rats. Increased PKG content and activity appears to play a major upstream role in CO(2)-induced suppression of ROCK activity in pulmonary arterial smooth muscle.  相似文献   

12.
An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days and from control ewes. In vessels constricted to endothelin-1, 8-bromoguanosine-cGMP (8-Br-cGMP) caused a smaller relaxation in chronically hypoxic (CH) vessels compared with controls. Rp-8-Br-PET-cGMPS, a PKG inhibitor, attenuated relaxation to 8-Br-cGMP in control vessels to a greater extent than in CH vessels. Y-27632, a ROCK inhibitor, significantly potentiated 8-Br-cGMP-induced relaxation of CH vessels and had only a minor effect in control vessels. The expression of PKG was increased but was not accompanied with an increase in the activity of the enzyme in CH vessels. The expression of type II ROCK and activity of ROCKs were increased in CH vessels. The phosphorylation of threonine (Thr)696 and Thr850 of the regulatory subunit MYPT1 of myosin light chain phosphatase was inhibited by 8-Br-cGMP to a lesser extent in CH vessels than in controls. The difference was eliminated by Y-27632. These results suggest that chronic hypoxia in utero attenuates PKG-mediated relaxation in pulmonary arteries, partly due to inhibition of PKG activity and partly due to enhanced ROCK activity. Increased ROCK activity may inhibit PKG action through increased phosphorylation of MYPT1 at Thr696 and Thr850.  相似文献   

13.
We previously reported that hypoxia attenuates cGMP-dependent protein kinase (PKG)-mediated relaxation in pulmonary vessels (Am J Physiol Lung Cell Mol Physiol 279: L611-L618, 2003). To determine whether hypoxia-induced reactive oxygen and nitrogen species (ROS and RNS, respectively) may be involved in the downregulation of PKG-mediated relaxation, ovine fetal intrapulmonary veins were exposed to 4 h of normoxia or hypoxia, with or without scavengers of ROS [N-acetylcysteine (NAC)] or peroxynitrite (quercetin and Trolox) and preconstricted with endothelin-1. Hypoxia decreased the relaxation response to 8-bromo-cGMP, PKG protein expression, and kinase activity and increased tyrosine nitration in PKG. However, ROS and RNS scavengers prevented these changes. To determine whether increased PKG nitration diminishes PKG activity, pulmonary vein smooth muscle cells (PVSMC) were exposed to shorter-term (30 min) hypoxia, which increased PKG nitration and decreased PKG activity but did not alter PKG protein expression. Increased dihydro-2,7-dichlorofluorescein diacetate (DCFH(2)-DA) fluorescence in PVSMC after 4 h or 30 min of hypoxia was not observed in the presence of NAC, quercetin, or Trolox, suggesting increased ROS and RNS production. Increased PKG nitration and the associated decrease in PKG activity in PVSMC after 30 min of hypoxia were also reversed on reoxygenation. The consequences of PKG nitration were assessed by exposure of purified PKG-Ialpha to peroxynitrite, which caused increased 3-nitrotyrosine immunoreactivity and inhibition of kinase activity. Our data suggest that, after 30 min of hypoxia, reversible covalent modification of PKG by hypoxia-induced reactive species may be an important mechanism by which the relaxation response to cGMP is regulated. However, after 4 h of hypoxia, PKG nitration and decreased PKG expression are involved.  相似文献   

14.
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.  相似文献   

15.
The initial event of hypoxic pulmonary hypertension is acute hypoxic pulmonary vasoconstriction followed by remodeling of pulmonary arteries. Although 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE] is found to be able to induce hypoxic pulmonary vasoconstriction, role of 15(S)-HETE in pulmonary artery smooth muscle cells (PASMCs) proliferation has been studied less. We sought evidence for a role of 15(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that hypoxia enhances 15-lipoxygenase-2 (15-LOX-2) expression and stimulates cultured rabbit PASMCs proliferation. 15(S)-HETE at concentration 0.1 μM stimulated proliferation of PASMCs and induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 15(S)-HETE-stimulated PASMC proliferation was blocked by the MEK inhibitors PD-98059. Hypoxia (3% O(2))-stimulated PASMC proliferation was blocked by U0126, a MEK inhibitor, as well as by NDGA and CDC, inhibitors of 15-LOX, but not by the p38 MAPK inhibitor SB-202190. We conclude that 15-LOX-2 and its product, 15(S)-HETE, are important intermediates in hypoxia-induced rabbit PASMC proliferation and may participate in hypoxia-induced pulmonary hypertension.  相似文献   

16.
Alterations in a redox oxygen sensing mechanism in chronic hypoxia.   总被引:12,自引:0,他引:12  
The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+ channels in pulmonary artery smooth muscle cells. Changes in PO2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species, inhibit K+ channels, and cause constriction. Two-day and 3-wk chronic hypoxia (CH) resulted in a decrease in basal activated oxygen species levels, an increase in reduced glutathione, and loss of HPV and rotenone-induced constriction. In contrast, 4-aminopyridine- and KCl-mediated constrictions were preserved. After 3-wk CH, pulmonary arterial smooth muscle cell membrane potential was depolarized, K+ channel density was reduced, and acute hypoxic inhibition of whole cell K+ current was lost. In addition, Kv1.5 and Kv2.1 channel protein was decreased. These data suggest that chronic reduction of the cytosol occurs before changes in K+ channel expression. HPV may be attenuated in CH because of an impaired redox sensor.  相似文献   

17.
Hypoxic pulmonary vasoconstriction is unique to pulmonary arteries and serves to match lung perfusion to ventilation. However, in disease states this process can promote hypoxic pulmonary hypertension. Hypoxic pulmonary vasoconstriction is associated with increased NADH levels in pulmonary artery smooth muscle and with intracellular Ca(2+) release from ryanodine-sensitive stores. Because cyclic ADP-ribose (cADPR) regulates ryanodine receptors and is synthesized from beta-NAD(+), we investigated the regulation by beta-NADH of cADPR synthesis and metabolism and the role of cADPR in hypoxic pulmonary vasoconstriction. Significantly higher rates of cADPR synthesis occurred in smooth muscle homogenates of pulmonary arteries, compared with homogenates of systemic arteries. When the beta-NAD(+):beta-NADH ratio was reduced, the net amount of cADPR accumulated increased. This was due, at least in part, to the inhibition of cADPR hydrolase by beta-NADH. Furthermore, hypoxia induced a 10-fold increase in cADPR levels in pulmonary artery smooth muscle, and a membrane-permeant cADPR antagonist, 8-bromo-cADPR, abolished hypoxic pulmonary vasoconstriction in pulmonary artery rings. We propose that the cellular redox state may be coupled via an increase in beta-NADH levels to enhanced cADPR synthesis, activation of ryanodine receptors, and sarcoplasmic reticulum Ca(2+) release. This redox-sensing pathway may offer new therapeutic targets for hypoxic pulmonary hypertension.  相似文献   

18.
We previously showed that tanshinone IIA ameliorated the hypoxia-induced pulmonary hypertension (HPH) partially by attenuating pulmonary artery remodeling. The hypoxia-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the major causes for pulmonary arterial remodeling, therefore the present study was performed to explore the effects and underlying mechanism of tanshinone IIA on the hypoxia-induced PASMCs proliferation. PASMCs were isolated from male Sprague-Dawley rats and cultured in normoxic (21%) or hypoxic (3%) condition. Cell proliferation was measured with 3 - (4, 5 - dimethylthiazal - 2 - yl) - 2, 5 - diphenyltetrazoliumbromide assay and cell counting. Cell cycle was measured with flow cytometry. The expression of of p27, Skp-2 and the phosphorylation of Akt were measured using western blot and/or RT-PCR respectively. The results showed that tanshinone IIA significantly inhibited the hypoxia-induced PASMCs proliferation in a concentration-dependent manner and arrested the cells in G1/G0-phase. Tanshinone IIA reversed the hypoxia-induced reduction of p27 protein, a cyclin-dependent kinase inhibitor, in PASMCs by slowing down its degradation. Knockdown of p27 with specific siRNA abolished the anti-proliferation of tanshinone IIA. Moreover, tanshinone IIA inhibited the hypoxia-induced increase of S-phase kinase-associated protein 2 (Skp2) and the phosphorylation of Akt, both of which are involved in the degradation of p27 protein. In vivo tanshinone IIA significantly upregulated the hypoxia-induced p27 protein reduction and downregulated the hypoxia-induced Skp2 increase in pulmonary arteries in HPH rats. Therefore, we propose that the inhibition of tanshinone IIA on hypoxia-induce PASMCs proliferation may be due to arresting the cells in G1/G0-phase by slowing down the hypoxia-induced degradation of p27 via Akt/Skp2-associated pathway. The novel information partially explained the anti-remodeling property of tanshinone IIA on pulmonary artery in HPH.  相似文献   

19.
This study investigated the effect of L-arginine (L-Arg) on the apoptosis of pulmonary arterysmooth muscle cells (PASMC) in rats with hypoxic pulmonary vascular structural remodeling,and itsmechanisms.Seventeen Wistar rats were randomly divided into a control group (n=5),a hypoxia group(n=7),and a hypoxia L-Arg group (n=5).The morphologic changes of lung tissues were observed underoptical microscope.Using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay,the apoptosis of PASMC was examined.Fas expression in PASMC wasexamined using immunohistochemistry.The results showed that the percentage of muscularized artery insmall pulmonary vessels,and the relative medial thickness and relative medial area of the small and medianpulmonary muscularized arteries in the hypoxic group were all significantly increased.Pulmonary vascularstructural remodeling developed after hypoxia.Apoptotic smooth muscle cells of the small and median pul-monary arteries in the hypoxia group were significantly less than those in the control group.After 14 d ofhypoxia,Fas expression by smooth muscle cells of median and small pulmonary arteries was significantlyinhibited.L-Arg significantly inhibited hypoxic pulmonary vascular structural remodeling in association withan augmentation of apoptosis of smooth muscle cells as well as Fas expression in PASMC.These resultsshowed that L-Arg could play an important role in attenuating hypoxic pulmonary vascular structural remod-eling by upregulating Fas expression in PASMC,thus promoting the apoptosis of PASMC.  相似文献   

20.
The molecular mechanisms underlying hypoxic pulmonary vasoconstriction (HPV) are not yet properly understood. Mitochondrial electron transport chain (ETC) and NADPH oxidase have been proposed as possible oxygen sensors, with derived reactive oxygen species (ROS) playing key roles in coupling the sensor(s) to the contractile machinery. We have recently reported that activation of neutral sphingomyelinase (nSMase) and protein kinase C ζ (PKCζ) participate in the signalling cascade of HPV. Herein, we studied the significance of nSMase in controlling ROS production rate in rat pulmonary artery (PA) smooth muscle cells and thereby HPV in rat PA. ROS production (analyzed by dichlorofluorescein and dihydroethidium fluorescence) was increased by hypoxia in endothelium-denuded PA segments and their inhibition prevented hypoxia-induced voltage-gated potassium channel (K(V) ) inhibition and pulmonary vasoconstriction. Consistently, H(2) O(2) , or its analogue t-BHP, decreased K(V) currents and induced a contractile response, mimicking the effects of hypoxia. Inhibitors of mitochondrial ETC (rotenone) and NADPH oxidase (apocynin) prevented hypoxia-induced ROS production, K(V) channel inhibition and vasoconstriction. Hypoxia induced p47(phox) phosphorylation and its interaction with caveolin-1. Inhibition of nSMase (GW4869) or PKCζ prevented p47(phox) phosphorylation and ROS production. The increase in ceramide induced by hypoxia (analyzed by immunocytochemistry) was inhibited by rotenone. Exogenous ceramide increased ROS production in a PKCζ sensitive manner. We propose an integrated signalling pathway for HPV which includes nSMase-PKCζ-NADPH oxidase as a necessary step required for ROS production and vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号