首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple pathways participate in the AMPA receptor trafficking that underlies long-term potentiation (LTP) of synaptic transmission. Here we demonstrate that protein SUMOylation is required for insertion of the GluA1 AMPAR subunit following transient glycine-evoked increase in AMPA receptor surface expression (ChemLTP) in dispersed neuronal cultures. ChemLTP increases co-localisation of SUMO-1 and the SUMO conjugating enzyme Ubc9 and with PSD95 consistent with the recruitment of SUMOylated proteins to dendritic spines. In addition, we show that ChemLTP increases dendritic levels of SUMO-1 and Ubc9 mRNA. Consistent with activity dependent translocation of these mRNAs to sites near synapses, levels of the mRNA binding and dendritic transport protein CPEB are also increased by ChemLTP. Importantly, reducing the extent of substrate protein SUMOylation by overexpressing the deSUMOylating enzyme SENP-1 or inhibiting SUMOylation by expressing dominant negative Ubc9 prevent the ChemLTP-induced increase in both AMPAR surface expression and dendritic SUMO-1 mRNA. Taken together these data demonstrate that SUMOylation of synaptic protein(s) involved in AMPA receptor trafficking is necessary for activity-dependent increases in AMPAR surface expression.  相似文献   

2.
3.
4.
SENPs are proteases that participate in the regulation of SUMOylation by generating mature small ubiquitin-related modifiers (SUMO) for protein conjugation (endopeptidase activity) and removing conjugated SUMO from targets (isopeptidase activity). Using purified recombinant catalytic domains of 6 of the 7 human SENPs, we demonstrate the specificity of their respective activities on SUMO-1, -2, and -3. The primary mode of recognition of substrates is via the SUMO domain, and the C-terminal tails direct endopeptidase specificity. Broadly speaking, SENP1 is the most efficient endopeptidase, whereas SENP2 and -5-7 have substantially higher isopeptidase than endopeptidase activities. We developed fluorogenic tetrapeptide substrates that are cleaved by SENPs, enabling us to characterize the environmental profiles of each enzyme. Using these synthetic substrates we reveal that the SUMO domain enhances catalysis of SENP1, -2, -5, -6, and -7, demonstrating substrate-induced activation of SENPs by SUMOs.  相似文献   

5.
6.
7.
Global increases in small ubiquitin‐like modifier (SUMO)‐2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO‐2/3‐specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3‐mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1‐mediated cytochrome c release and caspase‐mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation‐induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.  相似文献   

8.
9.
Promyelocytic leukemia protein (PML) is the core component of PML-nuclear bodies (PML NBs). The small ubiquitin-like modifier (SUMO) system (and, in particular, SUMOylation of PML) is a critical component in the formation and regulation of PML NBs. SUMO protease SENP6 has been shown previously to be specific for SUMO-2/3-modified substrates and shows preference for SUMO polymers. Here, we further investigate the substrate specificity of SENP6 and show that it is also capable of cleaving mixed chains of SUMO-1 and SUMO-2/3. Depletion of SENP6 results in accumulation of endogenous SUMO-2/3 and SUMO-1 conjugates, and immunofluorescence analysis shows accumulation of SUMO and PML in an increased number of PML NBs. Although SENP6 depletion drastically increases the size of PML NBs, the organizational structure of the body is not affected. Mutation of the catalytic cysteine of SENP6 results in its accumulation in PML NBs, and biochemical analysis indicates that SUMO-modified PML is a substrate of SENP6.  相似文献   

10.
SUMO proteases can regulate the amounts of SUMO-conjugated proteins in the cell by cleaving off the isopeptidic bond between SUMO and the target protein. Of the six members that constitute the human SENP/ULP protease family, SENP6 and SENP7 are the most divergent members in their conserved catalytic domain. The SENP6 and SENP7 subclass displays a clear proteolytic cleavage preference for SUMO2/3 isoforms. To investigate the structural determinants for such isoform specificity, we have identified a unique sequence insertion in the SENP6 and SENP7 subclass that is essential for their proteolytic activity and that forms a more extensive interface with SUMO during the proteolytic reaction. Furthermore, we have identified a region in the SUMO surface determinant for the SUMO2/3 isoform specificity of SENP6 and SENP7. Double point amino acid mutagenesis on the SUMO surface allows us to swap the specificity of SENP6 and SENP7 between the two SUMO isoforms. Structure-based comparisons combined with biochemical and mutagenesis analysis have revealed Loop 1 insertion in SENP6 and SENP7 as a platform to discriminate between SUMO1 and SUMO2/3 isoforms in this subclass of the SUMO protease family.  相似文献   

11.
12.
13.
14.
15.
SUMOylation is a reversible process regulated by a family of sentrin/SUMO-specific proteases (SENPs). Of the six SENP family members, except for SENP1 and SENP2, the substrate specificities of the rest of SENPs are not well defined. Here, we have described SENP5, which has restricted substrate specificity. SENP5 showed SUMO-3 C-terminal hydrolase activity but could not process pro-SUMO-1 in vitro. Furthermore, SENP5 showed more limited isopeptidase activity in vitro. In vivo, SENP5 showed isopeptidase activity against SUMO-2 and SUMO-3 conjugates but not against SUMO-1 conjugates. Native SENP5 localized mainly to the nucleolus but was also found in the nucleus. The N terminus of SENP5 contains a stretch of amino acids responsible for the nucleolar localization of SENP5. N-terminal-truncated SENP5 co-localized with PML, a known SUMO substrate. Using PML SUMOylation mutants as model substrates, we showed that SENP5 can remove poly-SUMO-2 or poly-SUMO-3 from the Lys160 or Lys490 positions of PML. However, SENP5 could not remove SUMO-1 from the Lys160 or Lys490 positions of PML. Nonetheless, SENP5 could remove SUMO-1, -2, and -3 from the Lys65 position of PML. Thus, SENP5 also possesses limited SUMO-1 isopeptidase activity. We were also able to show that SENP3 has substrate specificity similar to that of SENP5. Thus, SENP3 and SENP5 constitute a subfamily of SENPs that regulate the formation of SUMO-2 or SUMO-3 conjugates and, to a less extent, SUMO-1 modification.  相似文献   

16.
17.
18.
The axon/dendrite specification collapsin response mediator protein 2 (CRMP2) bidirectionally modulates N-type voltage-gated Ca2+ channels (CaV2.2). Here we demonstrate that small ubiquitin-like modifier (SUMO) protein modifies CRMP2 via the SUMO E2-conjugating enzyme Ubc9 in vivo. Removal of a SUMO conjugation site KMD in CRMP2 (K374A/M375A/D376A; CRMP2AAA) resulted in loss of SUMOylated CRMP2 without compromising neurite branching, a canonical hallmark of CRMP2 function. Increasing SUMOylation levels correlated inversely with calcium influx in sensory neurons. CRMP2 deSUMOylation by SUMO proteases SENP1 and SENP2 normalized calcium influx to those in the CRMP2AAA mutant. Thus, our results identify a novel role for SUMO modification in CRMP2/CaV2.2 signaling pathway.  相似文献   

19.
Dynamic modification of target proteins by small ubiquitin-like modifier (SUMO) is known to modulate many important cellular processes and is required for cell viability and development in all eukaryotes. However, understanding of SUMO systems in plants, especially in unicellular green algae, remains elusive. In this study, Chlamydomonas reinhardtii CrSUMO96, CrSUMO97 and CrSUMO148 were characterized. We show that the formation of polymeric CrSUMO96 and CrSUMO97 chains can be catalyzed either by the human SAE1/SAE2 and Ubc9 SUMOylation system in vitro or by an Escherichia coli chimeric SUMOylation system in vivo. An exposed C-terminal di-glycine motif of CrSUMO96 or CrSUMO97 is essential for functional SUMOylation. The human SUMO-specific protease, SENP1, demonstrates more processing activity for CrSUMO97 than for CrSUMO96. The CrSUMO148 precursor notably has four repeated di-glycine motifs at the C-terminus. This unique feature is not found in other known SUMO proteins. Interestingly, only 83-residual CrSUMO1481–83 with the first di-glycine motif can form SAE1/SAE2–SUMO complex and further form polymeric chains with the help of Ubc9. More surprisingly, CrSUMO148 precursor is digested by SENP1, solely at the peptide bond after the first di-glycine motif although there are four theoretically identical processing sites in the primary sequence. This process directly generates 83-residual CrSUMO1481–83 mature protein, which is exactly the form suitable for activation and conjugation. We also show that SENP1 displays similar isopeptidase activity in the deconjugation of polymeric CrSUMO96, CrSUMO97 or CrSUMO148 chains, revealing that the catalytic mechanisms of processing and deconjugation of CrSUMOs by SENP1 may differ.  相似文献   

20.
Among the seven small ubiquitin-like modifier (SUMO)-specific proteases (SENPs), our previous work showed that SENP1 suppressed nuclear factor kappa B (NF-κB) activation and alleviates the inflammatory response in microglia. However, the mechanism is still largely unknown. In this study, western blot analysis and enzyme-linked immunosorbent assay were utilized for evaluating the extent of NF-κB activation and expression of proinflammatory cytokines. qPCR and western blot analysis were performed to detect SENP1 expression. Coimmunoprecipitation followed by western blot analysis was applied to measure the changes in SUMOylation of NF-κB essential modulator (NEMO) and P65 in microglia with or without overexpression of SENP1. As the results, we found that intermittent hypoxia (IH) triggered the activation of NF-κB and upregulated the expression levels of tumor necrosis factor-α and interleukin-6. Interestingly, our data indicated that the SUMOylation of NEMO was enhanced by IH while SUMOylation of P65 was not affected. Further, our data showed that overexpression of SENP1 could decrease the extent of NF-κB activation and inhibit the inflammatory response of microglia through regulating the SUMOylation of NEMO. Collectively, this study presents the first report of the SENP1-controlled de-SUMOylation process of NEMO and its critical role in regulating NF-κB activation and proinflammatory cytokines secretion in microglia cells. This study would benefit for clarifying the role of SENP1 in IH-induced activation of microglia, thus providing potential therapeutic targets for obstructive sleep apnea treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号