首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iterated DnaA box sequences within the replication origins of bacteria and prokaryotic plasmids are recognized by the replication initiator, DnaA protein. At the E. coli chromosomal origin, oriC, DnaA is speculated to oligomerize to initiate DNA replication. We developed an assay of oligomer formation at oriC that relies on complementation between two dnaA alleles that are inactive by themselves. One allele is dnaA46; its inactivity at the non-permissive temperature is due to a specific defect in ATP binding. The second allele, T435K, does not support DNA replication because of its inability to bind to DnaA box sequences within oriC. We show that the T435K allele can complement the dnaA46(Ts) allele. The results support a model of oligomer formation in which DnaA box sequences of oriC are bound by DnaA46 to which T435K then binds to form an active complex. Relying on this assay, leucine 5, tryptophan 6 and cysteine 9 in a predicted alpha helix were identified that, when altered, interfere with oligomer formation. Glutamine 8 is additionally needed for oligomer formation on an oriC-containing plasmid, suggesting that the structure of the DnaA-oriC complex at the chromosomal oriC locus is similar but not identical to that assembled on a plasmid. Other evidence suggests that proline 28 of DnaA is involved in the recruitment of DnaB to oriC. These results provide direct evidence that DnaA oligomerization at oriC is required for initiation to occur.  相似文献   

2.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

3.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

4.
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.  相似文献   

5.
6.
In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility-shift assay re-vealed that acidic phospholipids inhibited formation of a DnaA-oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.  相似文献   

7.
The initiation of DNA replication is a key event in the cell cycle of all organisms. In bacteria, replication initiation occurs at specific origin sequences that are recognized and processed by an oligomeric complex of the initiator protein DnaA. We have determined the structure of the conserved core of the Aquifex aeolicus DnaA protein to 2.7 A resolution. The protein comprises an AAA+ nucleotide-binding fold linked through a long, helical connector to an all-helical DNA-binding domain. The structure serves as a template for understanding the physical consequences of a variety of DnaA mutations, and conserved motifs in the protein suggest how two critical aspects of origin processing, DNA binding and homo-oligomerization, are mediated. The spatial arrangement of these motifs in DnaA is similar to that of the eukaryotic-like archaeal replication initiation factor Cdc6/Orc1, demonstrating that mechanistic elements of origin processing may be conserved across bacterial, archaeal and eukaryotic domains of life.  相似文献   

8.
Excessive initiation of chromosomal replication occurs in the dnaAcos mutant at 30°C. Whereas purified wild-type DnaA protein binds ATP and ADP tightly, DnaAcos protein is defective for such nucleotide binding. As initiation is a multistep reaction and DnaA protein functions at each step, activities of DnaAcos protein need to be examined precisely. DnaAcos protein specifically bound a DNA fragment containing the chromosomal replication origin with an affinity similar to that seen with the wild-type protein. In a system reconstituted with purified proteins at 30°C, the mutant protein initiated replication of single-stranded DNA that contains a DnaA-binding hairpin structure. Thus, DnaAcos protein basically sustains affinity to a DnaA-binding sequence and functions in the loading of DnaB helicase onto single-stranded DNA. Thermal stabilities of wild-type DnaA and DnaAcos activities were comparable. Unlike wild-type DnaA protein, DnaAcos protein was inactive for minichromosomal replication in systems reconstituted with purified proteins in which the ATP-bound form of DnaA protein is required for initiation. Taken together, the data indicate that the prominent defect in DnaAcos protein appears to be the inability to bind nucleotide.  相似文献   

9.
In Escherichia coli, initiation of chromosomal replication is activated by a nucleoprotein complex formed primarily between the DnaA protein and oriC (replication origin) DNA. After replicational initiation, this complex has to be inactivated in order to repress the appearance of initiation events until the next scheduled round of initiation. Studies of the mechanisms responsible for this repression have recently revealed direct coupling between these mechanisms and key elements of the replication process, suggesting that feedback-type regulatory loops exist between the factors implicated in initiation and the elements yielded by the replication process. The loading of the ring-shaped beta-subunit of DNA polymerase III onto DNA plays a key role in the inactivation of the DnaA protein. Duplication of oriC DNA results in hemimethylated DNA, which is inert for reinitiation. Titration of large amounts of DnaA protein to a non-oriC locus can repress untimely initiations, and timely duplication of this locus is required for this repression in rapidly growing cells. All these systems functionally complement one another to ensure the maintenance of the interinitiation interval between two normal DNA replication cycles. The mechanisms that link the replication cycle to the progression of the cell cycle are also discussed.  相似文献   

10.
Kato J  Katayama T 《The EMBO journal》2001,20(15):4253-4262
The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.  相似文献   

11.
DnaA protein, the initiator for chromosomal DNA replication in Escherichia coli, has various activities, such as oligomerization (DnaA-DnaA interaction), ATP-binding, ATPase activity and membrane-binding. Site-directed mutational analyses have revealed not only the amino acid residues that are essential for these activities but also the functions of these activities. Following is a summary of the functions and regulatory mechanisms of DnaA protein in the initiation of chromosomal DNA replication. ATP-bound DnaA protein, but not other forms of the protein binds to the origin of DNA replication and forms oligomers to open-up the duplex DNA. This oligomerization is mediated by a DnaA-DnaA interaction through the N-terminal region of the protein. After initiation of DNA replication, the ATPase activity of DnaA protein is stimulated and DnaA protein is inactivated to the ADP-bound form to suppress the re-initiation of DNA replication. DnaA protein binds to acidic phospholipids through an ionic interaction between basic amino acid residues of the protein and acidic residues of phospholipids. This interaction seems to be involved in the re-activation of DnaA protein (from the ADP-bound form to the ATP-bound form) to initiate DNA replication after the appropriate interval.  相似文献   

12.
In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or interdependent by substituting many conserved amino acids in this region with alanine to identify essential residues. We show that alanine substitutions of leucine 3, phenylalanine 46, and leucine 62 do not affect DnaA function in initiation. In contrast, we find on characterization of a mutant DnaA that tryptophan 6 is essential for DnaA function because its substitution by alanine abrogates self-oligomerization, resulting in the failure to load DnaB at oriC. These results indicate that DnaA bound to oriC forms a specific oligomeric structure, which is required to load DnaB helicase.  相似文献   

13.
The ATP-bound but not the ADP-bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP-DnaA is repressed to only approximately 20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP-DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP-DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP-DnaA from ADP-DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.  相似文献   

14.
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.  相似文献   

15.
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~ 15 Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.  相似文献   

16.
The DnaA protein concentration in Escherichia coli was increased above the wild-type level by inducing a lacP-controlled dnaA gene located on a plasmid. In these cells with different DnaA protein levels, we measured several parameters: dnaA gene expression; cell size, amount of DNA per cell, and number of origins per cell by flow cytometry; and origin-to-terminus ratio and the frequencies of five other markers on the chromosome by Southern hybridization. The response of the cells to higher levels of DnaA protein could be divided into three states. From the normal level to a level 1.5-fold higher, DnaA protein had little effect on dnaA gene expression and the rate of DNA replication but led to nearly proportional increases in DNA and origin concentrations. Between 1.5- and 3-fold, the normal DnaA protein concentration, dnaA gene expression was gradually decreased. In this interval, the origin concentration increased significantly; however, the replication rate was severely affected, becoming slower--especially near the origin--the higher the DnaA protein concentration, and as a result, the DNA concentration was constant. Further increases in the DnaA protein concentration did not lead to an increased origin concentration. Thus, the initiation mass was set by the DnaA protein from the normal level to an at least twofold-increased level, but the increased initiation did not lead to a large increase in the amount of DNA per unit of mass because of the inhibition of replication fork velocity.  相似文献   

17.
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step‐wise complex that loads the replicative helicase onto chromosomal DNA. In many low‐GC Gram‐positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two‐hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.  相似文献   

18.
Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Although previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.  相似文献   

19.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

20.
In Escherichia coli, initiation of chromosome replication requires that DnaA binds to R boxes (9-mer repeats) in oriC, the unique chromosomal replication origin. At the time of initiation, integration host factor (IHF) also binds to a specific site in oriC. IHF stimulates open complex formation by DnaA on supercoiled oriC in cell-free replication systems, but it is unclear whether this stimulation involves specific changes in the oriC nucleoprotein complex. Using dimethylsulphate (DMS) footprinting on supercoiled oriC plasmids, we observed that IHF redistributed prebound DnaA, stimulating binding to sites R2, R3 and R5(M), as well as to three previously unidentified non-R sites with consensus sequence (A/T)G(G/C) (A/T)N(G/C)G(A/T)(A/T)(T/C)A. Redistribution was dependent on IHF binding to its cognate site and also required a functional R4 box. By reducing the DnaA level required to separate DNA strands and trigger initiation of DNA replication at each origin, IHF eliminates competition between strong and weak sites for free DnaA and enhances the precision of initiation synchrony during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号