共查询到20条相似文献,搜索用时 15 毫秒
1.
Versatile signal peptide of Flavobacterium‐originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli 下载免费PDF全文
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016 相似文献
2.
3.
A significantly improved, recombinant Escherichia coli has been developed to degrade the toxic organophosphorus compound, Paraoxon, to non-toxic materials by co-expression of organophosphorus hydrolase (OPH) under trc promoter and Vitreoscilla hemoglobin (VHb) under O2dependent nar promoter. VHb-expressing whole cells had significant enhancement of OPH activity (48%, 18.7 vs. 27.8 unit l–1) and bioconversion efficiency V
max/K
m (44%, 0.14 vs. 0.2 min–1) compared to VHb-free system. 相似文献
4.
Li C Zhu Y Benz I Schmidt MA Chen W Mulchandani A Qiao C 《Biotechnology and bioengineering》2008,99(2):485-490
We report, the surface presentation of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusions by employing the adhesin-involved-in-diffuse-adherence (AIDA-I) translocator domain as a transporter and anchoring motif. The surface location of the OPH-GFP fusion protein was confirmed by immunofluorescence microscopy, and protease accessibility, followed by Western blotting analysis. The investigation of growth kinetics and stability of resting cultures showed that the presence of the AIDA-I translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed OPH-GFP was shown to have enzymatic activity and a functional fluorescence moiety. These results suggest that AIDA-I autotransporter is a useful tool to present heterologous macromolecule passenger proteins on the bacterial surface. Our strategy of linking GFP to OPH and the possibility to employ various bacterial species as host has enormous potential for enhancing field use. 相似文献
5.
Xie X Pashkov I Gao X Guerrero JL Yeates TO Tang Y 《Biotechnology and bioengineering》2009,102(1):20-28
Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed approximately 50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes. 相似文献
6.
Tushar N. Patel Ah‐Hyung Alissa Park Scott Banta 《Biotechnology and bioengineering》2013,110(7):1865-1873
Carbonic anhydrase is a valuable and efficient catalyst for CO2 hydration. Most often the free enzyme is employed which complicates catalyst recycling, and can increase cost due to the need for protein purification. Immobilization of the enzyme may address these shortcomings. Here we report the development of whole‐cell biocatalysts for CO2 hydration via periplasmic expression of two forms of carbonic anhydrase in Escherichia coli using two different targeting sequences. The enzymatic turnover numbers (kcat) and catalytic efficiencies (kcat/KM) were decreased by an order of magnitude as compared to the free soluble enzyme, indicating the introduction of transport limitations. However, the thermal stabilities were improved for most configurations (>88% activity retention up to 95°C for three of four whole‐cell biocatalysts), operational stabilities were more than satisfactory (100% retention after 24 h of use for all four whole‐cell biocatalysts), and CO2 hydration was significantly enhanced relative to the uncatalyzed reaction (~50–70% increase in CaCO3 precipitate formed). A significant advantage of the whole‐cell approach is that protein purification is no longer necessary, and the cells can be easily separated and recycled in future applications including biofuel production, biosensors, and carbon capture and storage. Biotechnol. Bioeng. 2013; 110: 1865–1873. © 2013 Wiley Periodicals, Inc. 相似文献
7.
Garvey M Griesser SS Griesser HJ Thierry B Nussio MR Shapter JG Ecroyd H Giorgetti S Bellotti V Gerrard JA Carver JA 《Biopolymers》2011,95(6):376-389
The well-characterized small heat-shock protein, alphaB-crystallin, acts as a molecular chaperone by interacting with unfolding proteins to prevent their aggregation and precipitation. Structural perturbation (e.g., partial unfolding) enhances the in vitro chaperone activity of alphaB-crystallin. Proteins often undergo structural perturbations at the surface of a synthetic material, which may alter their biological activity. This study investigated the activity of alphaB-crystallin when covalently bound to a support surface; alphaB-crystallin was immobilized onto a range of solid material surfaces, and its characteristics and chaperone activity were assessed. Immobilization was achieved via a plasma-deposited thin polymeric interlayer containing aldehyde surface groups and reductive amination, leading to the covalent binding of alphaB-crystallin lysine residues to the surface aldehyde groups via Schiff-base linkages. Immobilized alphaB-crystallin was characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and quartz crystal microgravimetry, which showed that 300 ng cm(-2) (dry mass) of oligomeric alphaB-crystallin was bound to the surface. Immobilized alphaB-crystallin exhibited a significant enhancement (up to 5000-fold, when compared with the equivalent activity of alphaB-crystallin in solution) of its chaperone activity against various proteins undergoing both amorphous and amyloid fibril forms of aggregation. The enhanced molecular chaperone activity of immobilized alphaB-crystallin has potential applications in preventing protein misfolding, including against amyloid disease processes, such as dialysis-related amyloidosis, and for biodiagnostic detection of misfolded proteins. 相似文献
8.
A surface anchoring motif using the ice nucleation protein (INP) of Xanthomonas campestris pv. campestris BCRC 12,846 for display of transglucosidase has been developed. The transglucosidase gene from Xanthomonas campestris pv. campestris BCRC 12,608 was fused to the truncated ina gene. This truncated INP consisting of N- and C-terminal domains (INPNC) was able to direct the expressed transglucosidase fusion protein to the cell surface of E. coli with apparent high enzymatic activity. The localization of the truncated INPNC-transglucosidase fusion protein was examined by Western blot analysis and immunofluorescence labeling, and by whole-cell enzyme activity in the glucosylation of hydroquinone. The glucosylation reaction was carried out at 40 degrees C for 1 h, which gave 23 g/L of alpha-arbutin, and the molar conversion based on the amount of hydroquinone reached 83%. The use of whole-cells of the wild type strain resulted in an alpha-arbutin concentration of 4 g/L and a molar conversion of 16% only under the same conditions. The results suggested that E. coli displaying transglucosidase using truncated INPNC as an anchoring motif can be employed as a whole-cell biocatalyst in glucosylation. 相似文献
9.
Tanaka N Tani Y Hattori H Tada T Kunugi S 《Protein science : a publication of the Protein Society》2004,13(12):3214-3221
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change. 相似文献
10.
M. S. R. Sastry Weibin Zhou François Baneyx 《Protein science : a publication of the Protein Society》2009,18(7):1439-1447
Hsp31 is a stress‐inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high‐affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20‐residue‐long hexahistidine tag to the N‐termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C‐termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging. 相似文献
11.
We have developed a new cell surface display system using a major outer membrane protein of Pseudomonas aeruginosa OprF as an anchoring motif. Pseudomonas fluorescens SIK W1 lipase gene was fused to the truncated oprF gene by C-terminal deletion fusion strategy. The truncated OprF-lipase fusion protein was successfully displayed on the surface of Escherichia coli. Localization of the truncated OprF-lipase fusion protein was confirmed by western blot analysis, immunofluorescence microscopy, and whole-cell lipase activity. To examine the enzymatic characteristics of the cell surface displayed lipase, the whole-cell enzyme activity and stability were determined under various conditions. Cell surface displayed lipase showed the highest activity at 37 degrees C and pH 8.0. It retained over 80% of initial activity after incubation for a week in both aqueous solution and organic solvent. When the E. coli cells displaying lipases were used for enantioselective resolution of racemic 1-phenylethanol in hexane, (R)-phenyl ethyl acetate was successfully obtained with the enantiomeric excess of greater than 96% in 36 h of reaction. These results suggest that E. coli cells displaying lipases using OprF as an anchoring motif can be employed for various biotechnological applications both in aqueous and nonaqueous phases. 相似文献
12.
Hyung‐Kwon Lim Thomas J. Mansell Stephen W. Linderman Adam C. Fisher Michael R. Dyson Matthew P. DeLisa 《Protein science : a publication of the Protein Society》2009,18(12):2537-2549
Recombinant expression of eukaryotic proteins in Escherichia coli is often limited by poor folding and solubility. To address this problem, we employed a recently developed genetic selection for protein folding and solubility based on the bacterial twin‐arginine translocation (Tat) pathway to rapidly identify properly folded recombinant proteins or soluble protein domains of mammalian origin. The coding sequences for 29 different mammalian polypeptides were cloned as sandwich fusions between an N‐terminal Tat export signal and a C‐terminal selectable marker, namely β‐lactamase. Hence, expression of the selectable marker and survival on selective media was linked to Tat export of the target mammalian protein. Since the folding quality control feature of the Tat pathway prevents export of misfolded proteins, only correctly folded fusion proteins reached the periplasm and conferred cell survival. In general, the ability to confer growth was found to relate closely to the solubility profile and molecular weight of the protein, although other features such as number of contiguous hydrophobic amino acids and cysteine content may also be important. These results highlight the capacity of Tat selection to reveal the folding potential of mammalian proteins and protein domains without the need for structural or functional information about the target protein. 相似文献
13.
Yang C Cai N Dong M Jiang H Li J Qiao C Mulchandani A Chen W 《Biotechnology and bioengineering》2008,99(1):30-37
Methyl parathion hydrolase (MPH) has been displayed on the surface of microorganisms for the first time using only N- and C-terminal domains of the ice nucleation protein (INPNC) from Pseudomonas syringae INA5 as an anchoring motif. A shuttle vector pINCM coding for INPNC-MPH was constructed and used to target MPH onto the surface of a natural p-nitrophenol (PNP) degrader, Pseudomonas putida JS444, overcoming the potential substrate uptake limitation. Over 90% of the MPH activity was located on the cell surface as determined by protease accessibility and cell fractionation experiments. The surface localization of the INPNC-MPH fusion was further verified by Western blot analysis and immunofluorescence microscopy. The engineered P. putida JS444 degraded organophosphates as well as PNP rapidly without growth inhibition. Compared to organophosphorus hydrolase-displaying systems reported, changes in substrate specificity highlight an important potential use of the engineered strain for the clean-up of specific organophosphate nerve agents. 相似文献
14.
Li Ling Lee HyungHo Ha Young‐Tae Chang Matthew P. DeLisa 《Protein science : a publication of the Protein Society》2009,18(2):277-286
Genetic and biochemical studies suggest that Alzheimer's disease (AD) is caused by a series of events initiated by the production and subsequent aggregation of the Alzheimer's amyloid β peptide (Aβ), the so‐called amyloid cascade hypothesis. Thus, a logical approach to treating AD is the development of small molecule inhibitors that either block the proteases that generate Aβ from its precursor (β‐ and γ‐secretases) or interrupt and/or reverse Aβ aggregation. To identify potent inhibitors of Aβ aggregation, we have developed a high‐throughput screen based on an earlier selection that effectively paired the folding quality control feature of the Escherichia coli Tat protein export system with aggregation of the 42‐residue AD pathogenesis effecter Aβ42. Specifically, a tripartite fusion between the Tat‐dependent export signal ssTorA, the Aβ42 peptide and the β‐lactamase (Bla) reporter enzyme was found to be export incompetent due to aggregation of the Aβ42 moiety. Here, we reasoned that small, cell‐permeable molecules that inhibited Aβ42 aggregation would render the ssTorA‐Aβ42‐Bla chimera competent for Tat export to the periplasm where Bla is active against β‐lactam antibiotics such as ampicillin. Using a fluorescence‐based version of our assay, we screened a library of triazine derivatives and isolated four nontoxic, cell‐permeable compounds that promoted efficient Tat‐dependent export of ssTorA‐Aβ42‐Bla. Each of these was subsequently shown to be a bona fide inhibitor of Aβ42 aggregation using a standard thioflavin T fibrillization assay, thereby highlighting the utility of our bacterial assay as a useful screen for antiaggregation factors under physiological conditions. 相似文献
15.
Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein 总被引:3,自引:0,他引:3
We investigated the ability of the N-terminal domain of InaK, an ice nucleation protein from Pseudomonas syringae KCTC1832, to act as an anchoring motif for the display of foreign proteins on the Escherichia coli cell surface. Total expression level and surface display efficiency of green fluorescent protein (GFP) was compared following their fusion with either the N-terminal domain of InaK (InaK-N), or with the known truncated InaK containing both N- and C-terminal domains (InaK-NC). We report that the InaK-N/GFP fusion protein showed a similar cell surface display efficiency ( approximately 50%) as InaK-NC/GFP, demonstrating that the InaK N-terminal region alone can direct translocation of foreign proteins to the cell surface and can be employed as a potential cell surface display motif. Moreover, InaK-N/GFP showed the highest levels of total expression and surface display based on unit cell density. InaK-N was also successful in directing cell surface display of organophosphorus hydrolase (OPH), confirming its ability to act as a display motif. 相似文献
16.
Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity 总被引:3,自引:0,他引:3
Saul FA Arié JP Vulliez-le Normand B Kahn R Betton JM Bentley GA 《Journal of molecular biology》2004,335(2):595-608
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates. 相似文献
17.
Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells 总被引:1,自引:0,他引:1
Hsp104 is a molecular chaperone in yeast that restores solubility and activity to inactivated proteins after severe heat shock. We investigated the mechanisms that influence Hsp104 subcellular distribution in both unstressed and heat-shocked cells. In unstressed cells, Hsp104 and a green fluorescent protein-Hsp104 fusion protein were detected in both the nucleus and the cytoplasm. We demonstrate that a 17-amino-acid sequence of Hsp104 nuclear localization sequence 17 (NLS17) is sufficient to target a reporter molecule to the nucleus and is also necessary for normal Hsp104 subcellular distribution. The nuclear targeting function of NLS17 is genetically dependent on KAP95 and KAP121. In addition, wild-type Hsp104, but not an NLS17-mutated Hsp104 variant, accumulated in the nucleus of cells depleted for the general export factor Xpo1. Interestingly, severe, nonlethal heat shock enhances the nuclear levels of Hsp104 in an NLS17-independent manner. Under these conditions, we demonstrate that karyopherin-mediated nuclear transport is impaired, while the integrity of the nuclear-cytoplasmic barrier remains intact. Based on these observations, we propose that Hsp104 continues to access the nucleus during severe heat shock using a karyopherin-independent mechanism. 相似文献
18.
It has been suggested that lack of specialized molecular chaperone function(s) in Escherichia coli may account for the fact that although E. coli cells transformed with plant Rubisco genes synthesize the Rubisco subunit polypeptides, the active enzyme fails to assemble. If so, co-expression of plant chaperone and Rubisco genes might permit plant Rubisco assembly in E. coli. Introduction of genes encoding plant chaperonin polypeptides has been shown to enhance the capacity of E. coli to assemble active cyanobacterial Rubisco. We now report that co-expression of plant Rubisco and chaperonin genes affected the solubility and stability of Rubisco large subunit polypeptides, however, neither the assembled oligomeric protein nor Rubisco enzyme activity was detected. 相似文献
19.
Hayley M. Bennett Kristin Lees Kate M. Harper Andrew K. Jones David B. Sattelle Susan Wonnacott Adrian J. Wolstenholme 《Journal of neurochemistry》2012,123(6):911-918
RIC‐3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC‐3 may be cell‐type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric‐3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC‐3 shares 52% amino acid identity with human RIC‐3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR‐16, to compare the ability of RIC‐3 from three species to enhance receptor expression. In the absence of RIC‐3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr‐16 to X. laevis ric‐3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric‐3 cRNAs were co‐injected with acr‐16 cRNA (1 : 1 ratio), 100 μM acetylcholine induced larger currents in oocytes expressing X. laevis RIC‐3 compared with its orthologues. This provides further evidence for a species‐specific component of RIC‐3 activity, and suggests that X. laevis RIC‐3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes. 相似文献
20.
Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus‐like particles produced in Escherichia coli 下载免费PDF全文
Paolo Saccardo Escarlata Rodríguez‐Carmona Antonio Villaverde Neus Ferrer‐Miralles 《Biotechnology progress》2014,30(3):744-748
Protein nanoparticles such as virus‐like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self‐assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK? E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:744–748, 2014 相似文献