首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同分离方法对子实体形成和粘细菌分离的影响   总被引:1,自引:0,他引:1  
【目的】基于模拟原位环境策略、可培养粘细菌的营养策略及细菌互作网络,改良分离培养基,以提高分离粘细菌的多样性。【方法】通过添加土壤浸提液、使用不同种类的诱导菌和改变诱导菌的接种方式设置分离方法,同时以传统的分离方法作对照。【结果】改良的分离方法比对照组诱导出了更多粘细菌子实体种类,采自4个地区的9份样品共分离纯化出40株粘细菌,按形态学和分子生物学,将其归类于原囊菌属(Archangium)、珊瑚菌属(Corallococcus)、软骨霉状菌属(Chondromyces)、粘球菌属(Myxococcus)、侏囊菌属(Nannocystis)、多囊菌属(Polyangium)、匣状球菌属(Pyxidicoccus)。【结论】与传统分离方法相比,添加土壤浸提液,诱导菌点接法能大大提高诱导出的粘细菌子实体种类的数目,革兰氏阳性菌和革兰氏阴性菌作为诱导菌对子实体种类影响较小,但是也发现革兰氏阳性菌特异性诱导出的子实体。虽然本研究通过对分离培养基的改良大大增加了子实体种类,但是纯化出的粘细菌种类远少于观察到的子实体种类,说明除改良分离方法外,还需进一步研究粘细菌的纯化方法,提高分离所得粘细菌的多...  相似文献   

2.
The diversity of myxobacteria present in campus garden soil was surveyed by both cultivation-based and cultivation-independent methods. Detailed phylogenetic analysis of cultured and uncultured myxobacteria 16S rRNA gene sequences revealed that many undescribed relatives of the myxobacteria exist in nature. Molecular systematic analyses also revealed that myxobacterial genera described to date on the basis of the morphology of multi-cellular fruiting bodies were mostly monophyletic. However, these known taxa comprised only in a small part of the sequences recovered directly from soil in a cultivation-independent approach, indicating that the group is much more diverse than previously thought. We propose that the myxobacteria exist in two forms: the fruiting and the non-fruiting types. Most of the uncultured myxobacteria may represent taxa which rarely form fruiting bodies, or may lack some or all of the developmental genes needed for fruiting body formation. In order to identify non-fruiting myxobacteria, new morphology-independent cultivation and isolation techniques need to be developed.  相似文献   

3.
A simple method to isolate salt-tolerant myxobacteria from marine samples   总被引:9,自引:0,他引:9  
This paper describes a simple method for the isolation of salt-tolerant myxobacteria from marine conditions. As the results show in this paper, salt-tolerant myxobacteria are found to be able to grow, but unable to form fruiting bodies at high salt concentrations. The fruiting body structures of the salt-tolerant strains were all formed in conditions with lower seawater content, i.e. lower than 60% seawater (about 2.0% salt content) or distilled water supplemented with MgCl(2). The method picked up the fruiting bodies for isolation.  相似文献   

4.
By using baiting techniques and different purification methods, a high number of myxobacterial strains have been isolated as pure cultures from soil of different regions of China. Because myxobacterial cells do not disperse easily in liquid media, a medium containing an enzymatic hydrolysate of casein (CEH) medium have been used for purification and purity tests combined in a single step. The key method, in which isolates are reintroduced to sterile rabbit dung to induce fruiting bodies formation, facilitates purification of myxobacteria. Sterile rabbit dung pellets are used to mimic the natural growth substance of these organisms which has the advantage that characteristic fruiting bodies emerge, which is a key characteristics in the taxonomy of myxobacteria. In this study, the optimum program of isolation and purification of some myxobacteria strains has been established which will facilitate screening programs. Moreover, the development of fruiting body formation of strain BD20 (Chondromyces) and strain BD54 (Cystobacter) have been recorded in this study.  相似文献   

5.
6.
The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.  相似文献   

7.
More and more studies have indicated that myxobacteria are able to live in seawater conditions, which, however, can decrease the fruiting body formation ability and also the adventurous (A) and social (S) motility systems of the myxobacteria. To learn the adaptation mechanism of the salt-tolerant myxobacteria to marine conditions, we analyzed 10 salt-tolerant Myxococcus strains of their fruiting body formation and motility. The isolates were from marine samples and possessed different levels of salt tolerance. They had the dual motility system and formed fruiting bodies in the presence of suitable seawater concentrations. Some high salt-tolerant strains even lost their fruiting abilities in the absence of seawater. In response to the presence of seawater, the S-motility was found to be increased in the high salt-tolerants but decreased in the low salt-tolerants. The A-motility, on the other hand, was observed in all the salt-tolerant Myxococcus strains, but increased or decreased in response to the presence of seawater. Perceived shifts of fruiting body formation abilities and motilities discovered in the salt-tolerant Myxococcus strains suggested an ecological adaptation of myxobacterial social behaviors to the marine environments.  相似文献   

8.
Pure cultures of many myxobacteria could be quickly obtained by treating fruiting bodies with highly dosed mixtures of antibiotics  相似文献   

9.
In the region of the "Siebengebirge" near Bonn, six characteristic biotopes were studied with respect to the occurrence of fruiting body forming myxobacteria. 23 different species, belonging to the 8 known genera, were found. The number of species in the respective biotopes varied between 6 and 17, the average numbers of species per sampling area were between 2.1 and 10.0. 15 species were found on dung pellets of wild living herbivorous mammals. Deciduous forest soils contained 13 species in spring, 17 species in autumn. Rock coverings contained 14, creek slopes 16, bark of living trees 9, and rotting wood 16 fruiting myxobacterial species. Myxococcus fulvus, Myxococcus coralloides and Archangium gephyra occurred in all biotops studied. The rare species were Melittangium boletus, Polyangium vitellinum, Stigmatella aurantiaca, and Chondramyces apiculatus. The composition of the myxobacterial flora depends on ecological factors (kind of dung pellets, rock, bark and pH). The ecological influences upon the distribution are discussed.  相似文献   

10.
Myxobacteria are gram-negative bacteria which are most noted for their ability to form fruiting bodies upon starvation. Within the last two decades, they increasingly gained attention as producers of natural products with biological activity. Here, recent and future biotechnological research on certain key myxobacteria and on their ability to produce natural products is reviewed with the focus on the production of myxovirescin, soraphen and epothilone. Aspects of product improvement and yield as well as statistics regarding secondary metabolite formation are discussed. Future research will deal with the exploitation of the biosynthetic potential of the myxobacteria, for example via the isolation of new myxobacterial species with different physiological properties. Additionally, the genetic potential of myxobacteria to form natural products can be exploited by the identification and activation of biosynthetic gene clusters. These can be found frequently within their genomes, which is shown by the analysis of the unfinished genomes of Myxococcus xanthus and Sorangium cellulosum. The current status of the S. cellulosum functional genome project with model strain So ce56 is discussed.  相似文献   

11.
Territorial interactions between two Myxococcus Species.   总被引:2,自引:0,他引:2       下载免费PDF全文
It is unusual to find fruiting bodies of different myxobacteria occupying the same territory on natural samples. We were thus interested in determining whether myxobacteria establish territorial dominance and, if so, what the mechanism of that interaction is. We had previously observed that vegetative swarms of Myxococcus xanthus and Stigmatella aurantiaca placed close to each other on an agar surface initially merged but eventually separated. Further studies indicated that these two species also formed separate fruiting bodies when mixed together on developmental agar (unpublished observation). We examined the interactions between two more closely related myxobacteria, M. xanthus and M. virescens, in greater detail. When mixtures of a kanamycin-resistant strain of M. xanthus and a kanamycin-sensitive strain of M. virescens were placed together under developmental conditions, the cells sorted themselves out and established separate fruiting body territories. In addition, differential viable counts of a mixture of the two species during development indicated that each strain was producing an extracellular component that inhibited the growth and development of the other. Nevertheless, finally, M. virescens invariably outcompeted M. xanthus at all input ratios of M. xanthus/M. virescens tested. This is consistent with the observation that M. virescens is by far the more commonly encountered of the two species. The properties of the inhibitory substance from M. virescens are consistent with the possibility that it is a bacteriocin. Our working hypothesis is that the bacteriocin plays a role in the establishment of myxobacterial territoriality. If so, this is an example of an ecological function of bacteriocins.  相似文献   

12.
Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family 'Haliangiaceae'. Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

13.
Myxobacteria - survivalists in soil Myxobacteria like Myxococccus xanthus are soil-living microorganisms featuring a complex lifestyle, including movement by coordinated swarming on surfaces, predatory feeding on other microorganisms, and the formation of multicellular fruiting bodies when unfavorable environmental conditions are encountered. Bioinformatic analysis of the large myxobacterial genomes has enabled fascinating insights into the molecular basis for the biosynthesis of complex secondary metabolite structures by myxobacteria, and has set the stage for the discovery of novel natural products. Moreover, well-characterized myxobacteria like M. xanthus increasingly play a role as “biochemical factories” for the biotechnological production of bioactive molecules using synthetic biology approaches.  相似文献   

14.
15.
Myxobacteria form highly colored macroscopic fruiting bodies on rotting wood and other substrates. The organisms can move by gliding or creeping, for example, across glass and agar surfaces. They also produce a large number of unusual secondary metabolites some of which have considerable potential as antibiotics. The large-scale cultivation of myxobacteria has also, therefore, become of great interest.  相似文献   

16.
粘细菌基因组学研究进展   总被引:3,自引:2,他引:1  
粘细菌(Myxobacteria)隶属于δ变形菌纲(Deltaproteobacteria)的粘球菌目(Myxococcales),是一类革兰氏阴性杆状细菌。它是继放线菌和真菌之后又一重要的活性次级代谢产物产生菌,尽管如此,由于分离纯化困难,粘细菌的研究进展一直较为缓慢。随着测序技术的进步和生物信息学的应用,大量粘细菌基因组被完成测序和报道。本文对粘细菌研究意义及该类资源开发价值、分离培养存在的困难进行了阐述,对粘细菌基因组注释及目前已测菌株的全基因组进行了归纳总结,同时介绍了基因组学在粘细菌生态、捕食机制、子实体形成以及次级代谢产物合成方面的研究进展。本文有助于了解基因组学在粘细菌研究中的重要价值,为联合应用多组学技术深入研究粘细菌代谢机制和社会性行为提供了参考,对粘细菌基础研究、资源发掘和开发利用具有重要意义。  相似文献   

17.
The long, rod-shaped cells of myxobacteria are polarized by their gliding engines. At the rear, A-engines push while pili pull the front end forward. An hypothesis is developed whereby both engines are partially dis-assembled, then re-assembled at the opposite pole when cells reverse their movement direction. Reversals are induced by an Mgl G-protein switch that controls engine polarity. The switch is driven by an oscillatory circuit of Frizzy proteins. In growing cells, the circuit gives rise to an occasional reversal that makes swarming possible. Then, as myxobacteria begin fruiting body development, a rising level of C-signal input drives the oscillator and changes the reversal pattern. Cells reverse regularly every eight minutes in traveling waves, the reversal period is then prolonged enabling cells to form streams that enlarge tiny random aggregates into fruiting bodies.  相似文献   

18.
The myxobacteria are Gram-negative organisms that are capable of multicellular, social behaviour. In the presence of nutrients, swarms of myxobacteria feed cooperatively by sharing extracellular digestive enzymes, and can prey on other bacteria. When the food supply runs low, they initiate a complex developmental programme that culminates in the production of a fruiting body. Myxobacteria move by gliding and have two, polarly positioned engines to control their motility. The two engines undergo coordinated reversals, and changes in the reversal frequency and speed are responsible for the different patterns of movement that are seen during development. The myxobacteria communicate with each other and coordinate their movements through a cell-contact-dependent signal. Here, the cell movements that culminate in the development of the multicellular fruiting body are reviewed.  相似文献   

19.
粘细菌生态多样性的初步研究   总被引:9,自引:0,他引:9  
通过对河北,云南,青藏高原不同地区的粘细菌进行生态多样的研究,从42个样品中分离得到了10个属(Archangium,Myxococcus,Cystobacter,Corallococcus,Melittangium,Sorangium,Polyangium,Chondromyces,Angiococccus,Stigmatella)的150余株粘细菌,其中包括一些尚未有描述的菌株,有待鉴定,根据这些菌株的子实体结构,菌落形态,营养细胞,粘孢子形态等特征将它们初步鉴定到属,对这些特有自然生态环境的粘细菌按不同地点,植被,营养基质进行统计比较,结果表明,粘细菌生态分布极为广泛,具有丰富的生态多样性,以上结果为粘细菌生物资源的有效开发利用奠定了基础。  相似文献   

20.
140 leaf samples were examined, 73 of which (= 52.1%) contained myxobacteria. Three species of the genus Myxococcus, M. virescens, M. fulvus and M. coralloides, could be found more or less frequently in the phyllosphere of woody plants and annuals. Archangium gephyra was observed only once. There was no significant difference in the occurrence of myxobacteria between evergreen leaves and leaves from deciduous trees and shrubs. Fruit-trees yielded the best results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号