首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wang H  Deng XW 《The EMBO journal》2002,21(6):1339-1349
In Arabidopsis, phytochrome A (phyA) is the primary photoreceptor mediating various plant responses to far-red (FR) light. Here we show that phyA signaling involves a combinatorial action of downstream intermediates, which controls overlapping yet distinctive sets of FR responses. FHY3 is a prominent phyA signaling intermediate sharing structural similarity to FAR1, a previously identified phyA signaling component. The fhy3 and far1 mutants display similar yet distinctive defects in phyA signaling; however, overexpression of either FHY3 or FAR1 suppresses the mutant phenotype of both genes. Moreover, overexpression of partial fragments of FHY3 can cause a dominant-negative interference phenotype on phyA signaling that is stronger than those of the fhy3 or far1 null mutants. Further, we demonstrate that FHY3 and FAR1 are capable of homo- and hetero-interaction. Our data indicate that FHY3, together with FAR1, defines a key module in a signaling network underlying phyA-mediated FR light responses.  相似文献   

3.
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.  相似文献   

4.
J J Casal 《Plant physiology》1996,112(3):965-973
We sought to determine if phytochrome B (phyB)-mediated responses to the red light (R)/far-red light (FR) ratio are affected by phytochrome A (phyA) activity in light-grown seedlings of Arabidopsis thaliana. Pulses of FR delayed into the dark period were less effective than end-of-day (EOD) FR in promoting hypocotyl growth over a given period in darkness. White light minus blue light interposed instead of darkness between the end of the white-light photoperiod and the FR pulse was sufficient to maintain responsivity to the decrease in phyB in FR-light-absorbing form in wild-type (WT) seedlings, but not in the phyA mutant. Compared with EOD R, hourly R+FR pulses provided throughout the night caused a stronger promotion of stem growth than a single EOD R+FR pulse in WT Arabidopsis, cucumber, mustard, sunflower, tobacco, and tomato, but not in phyA Arabidopsis or in the aurea mutant of tomato. WT seedlings of Arabidopsis responded to a range of high EOD R/FR ratios, whereas the phyA mutant required stronger reductions in the EOD R/FR ratio. In sunlight, phyA seedlings of Arabidopsis showed no response to the "early warning" signals of neighboring vegetation, and hypocotyl-growth promotion occurred at higher plant densities than in the WT. Thus, under a series of light conditions, the sensitivity or responsivity to reductions in the R/FR ratio were larger in WT than in phyA seedlings. A product of phyA is therefore proposed to enhance the hypocotyl-growth response to decreases in phyB in FR-light-absorbing form in light grown seedlings.  相似文献   

5.
Phytochrome A (phyA) is the primary photoreceptor responsible for various far-red (FR) light-mediated responses. Previous studies have identified multiple phyA signaling mutants, including both positive and negative regulators of the phyA-mediated responses. How these defined intermediates act to mediate FR light responses is largely unknown. Here a cDNA microarray was used to examine effects of those mutations on the far-red light control of genome expression. Clustering analysis of the genome expression profiles supports the notion that phyA signaling may entail a network with multiple paths, controlling overlapping yet distinct sets of gene expression. FHY1, FAR1 and FHY3 most likely act upstream in the phyA signaling network, close to the phyA photoreceptor itself. FIN219, SPA1 and REP1 most likely act somewhere more downstream in the network and control the expression of smaller sets of genes. Further, this study also provides genomics evidence for the partial functional redundancy between FAR1 and FHY3. These two homologous proteins control the expression of a largely overlapping set of genes, and likely act closely together in the phyA-mediated FR light responses.  相似文献   

6.
Plants perceive red (R) and far-red (FR) light signals using the phytochrome family of photoreceptors. In Arabidopsis thaliana, five phytochromes (phyA-phyE) have been identified and characterized. Unlike other family members, phyA is subject to rapid light-induced proteolytic degradation and so accumulates to relatively high levels in dark-grown seedlings. The insensitivity of phyA mutant seedlings to prolonged FR and wild-type appearance in R has led to suggestions that phyA functions predominantly as an FR sensor during the early stages of seedling establishment. The majority of published photomorphogenesis experiments have, however, used <50 micromol m(-2) sec(-1) of R when characterizing phytochrome functions. Here we reveal considerable phyA activity in R at higher (>160 micromol m(-2) sec(-1)) photon irradiances. Under these conditions, plant architecture was observed to be largely regulated by the redundant actions of phytochromes A, B and D. Moreover, quadruple phyBphyCphyDphyE mutants containing only functional phyA displayed R-mediated de-etiolation and survived to flowering. The enhanced activity of phyA in continuous R (Rc) of high photon irradiance correlates with retarded degradation of the endogenous protein in wild-type plants and prolonged epifluorescence of nuclear-localized phyA:YFP in transgenic lines. Such observations suggest irradiance-dependent 'photoprotection' of nuclear phyA in R, providing a possible explanation for the increased activity observed. The discovery that phyA can function as an effective irradiance sensor, even in light environments that establish a high Pfr concentration, raises the possibility that phyA may contribute significantly to the regulation of growth and development in daylight-grown plants.  相似文献   

7.
Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6–12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
9.
10.
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.  相似文献   

11.
12.
Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.  相似文献   

13.
Phytochrome A (phyA) is the primary photoreceptor for sensing extremely low amounts of light and for mediating various far-red light-induced responses in higher plants. Translocation from the cytosol to the nucleus is an essential step in phyA signal transduction. EID1 (for EMPFINDLICHER IM DUNKELROTEN LICHT1) is an F-box protein that functions as a negative regulator in far-red light signaling downstream of the phyA in Arabidopsis (Arabidopsis thaliana). To identify factors involved in EID1-dependent light signal transduction, pools of ethylmethylsulfonate-treated eid1-3 seeds were screened for seedlings that suppress the hypersensitive phenotype of the mutant. The phenotype of the suppressor mutant presented here is caused by a missense mutation in the PHYA gene that leads to an amino acid transition in its histidine kinase-related domain. The novel phyA-402 allele alters the spectral sensitivity and the persistence of far-red light-induced high-irradiance responses. The strong eid1-3 suppressor phenotype of phyA-402 contrasts with the moderate phenotype observed when phyA-402 is introgressed into the wild-type background, which indicates that the mutation mainly alters functions in an EID1-dependent signaling cascade. The mutation specifically inhibits nuclear accumulation of the photoreceptor molecule upon red light irradiation, even though it still interacts with FHY1 (for far-red long hypocotyl 1) and FHL (for FHY1-like protein), two factors that are essential for nuclear accumulation of phyA. Degradation of the mutated phyA is unaltered even under light conditions that inhibit its nuclear accumulation, indicating that phyA degradation may occur mostly in the cytoplasm.  相似文献   

14.
Plants use the family of phytochrome photoreceptors to sense their light environment in the red/far-red region of the spectrum. Phytochrome A (phyA) is the primary photoreceptor that regulates germination and early seedling development. This phytochrome mediates seedling de-etiolation for the developmental transition from heterotrophic to photoauxotrophic growth. High intensity far-red light provides a way to specifically assess the role of phyA in this process and was used to isolate phyA-signaling intermediates. fhy1 and pat3 (renamed fhy1-3) are independently isolated alleles of a gene encoding a phyA signal transduction component. FHY1 is a small 24 kDa protein that shows no homology to known functional motifs, besides a small conserved septin-related domain at the C-terminus, a putative nuclear localization signal (NLS) and a putative nuclear exclusion signal (NES). Here we demonstrate that the septin-related domain is important for FHY1 to transmit phyA signals. Moreover, the putative NLS and NES of FHY1 are indeed involved in its nuclear localization and exclusion. Nuclear localization of FHY1 is needed for it to execute responses downstream of phyA. Together with the results from global expression analysis, our findings point to an important role of FHY1 in phyA signaling through its nuclear translocation and induction of gene expression.  相似文献   

15.
16.
A major function of phytochromes in light-grown plants involves the perception of changes in the relative amounts of red and far-red light (R:FR ratio) and the initiation of the shade-avoidance response. In Arabidopsis thaliana, this response is typified by increased elongation growth of petioles and accelerated flowering and can be fully induced by end-of-day far-red light (EOD FR) treatments. Phytochrome B-deficient (phyB) mutants, which have a constitutive elongated-petiole and early-flowering phenotype, do not display a petiole elongation growth response to EOD FR, but they do respond to EOD FR by earlier flowering. Seedlings deficient in both phytochrome A and phytochrome B (phyA phyB), have a greatly reduced stature compared with wild-type or either monogenic mutant. The phyA phyB double null mutants also respond to EOD FR treatments by flowering early, suggesting the operation of novel phytochromes. Contrary to the behaviour of wild-type or monogenic phyA or phyB seedlings, petiole elongation in phyA phyB seedlings is reduced in response to EOD FR treatments. This reduction in petiole elongation is accompanied by the appearance of elongated internodes such that under these conditions the plants no longer display a rosette habit.  相似文献   

17.
18.
Translocation from the cytosol to the nucleus is an essential step in phytochrome (phy) signal transduction. In the case of phytochrome A (phyA), this step occurs with the help of FHY1 (far-red-elongated hypocotyl 1), a specific transport protein. To investigate the components involved in phyA transport, we used a cell-free system that facilitates the controlled addition of transport factors. For this purpose, we isolated nuclei from the unicellular green algae Acetabularia acetabulum . These nuclei are up to 100 μm in diameter and allow easy detection of imported proteins. Experiments with isolated nuclei of Acetabularia showed that FHY1 is sufficient for phyA transport. The reconstituted system demonstrates all the characteristics of phytochrome transport in Arabidopsis thaliana . In addition, FHY1 was also actively exported from the nucleus, consistent with its role as a shuttle protein in plants. Therefore, we believe that isolated Acetabularia nuclei may be used as a general tool to study nuclear transport of plant proteins.  相似文献   

19.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.  相似文献   

20.
Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号