共查询到20条相似文献,搜索用时 15 毫秒
1.
Gutiérrez-Berzal J Castellano E Martín-Encabo S Gutiérrez-Cianca N Hernández JM Santos E Guerrero C 《Experimental cell research》2006,312(6):938-948
A novel C3G isoform, designated p87C3G, lacking the most amino terminal region of the cognate protein has been found to be overexpressed in two CML cell lines, K562 and Boff 210, both expressing Bcr-Abl p210. p87C3G expression is also highly augmented in patients diagnosed with chronic myeloid leukemia (CML) Ph+, in comparison with healthy individuals, and returns to basal levels after treatment with STI571. p87C3G co-immunoprecipitates with both CrkL and Bcr-Abl in CML cell lines and co-immunoprecipitation between p87C3G and Bcr-Abl was also detected in primary cells from CML patients. These interactions have been confirmed by in vitro pull down experiments. The interaction between p87C3G and Bcr-Abl involves the SH3-binding domain of p87C3G and the SH3 domain of Abl and depends mostly on the first polyproline region of p87C3G. Furthermore, we also demonstrated that p87C3G is phosphorylated in vitro by a Bcr-Abl-dependent mechanism. These results indicate that p87C3G overexpression is linked to CML phenotype and that p87C3G may exert productive functional interactions with Bcr-Abl signaling components suggesting the implication of this C3G isoform in the pathogenesis of chronic myeloid leukemia. 相似文献
2.
Bhattacharjee A Pal S Feldman GM Cathcart MK 《The Journal of biological chemistry》2011,286(42):36709-36723
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages. 相似文献
3.
Charlotte Steenblock Tobias Heckel Cornelia Czupalla Ana Isabel Espírito Santo Christian Niehage Martin Sztacho Bernard Hoflack 《The Journal of biological chemistry》2014,289(26):18347-18359
The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. 相似文献
4.
The Nef protein of the primate lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is essential for high-titer viral replication and acquired immune deficiency syndrome (AIDS) progression. Nef binds to the macrophage-specific Src family member Hck through its SH3 domain, resulting in constitutive kinase activation capable of transforming rodent fibroblasts. Nef-Hck interaction may be essential for M-tropic HIV replication and AIDS pathogenesis, identifying this virus-host protein complex as a rational target for anti-HIV drug discovery. Here, we investigated whether interaction with Hck is a common feature of Nef alleles from different strains of HIV-1. We compared the ability of four different laboratory HIV-1 Nef alleles (SF2, LAI, ELI, and Consensus) to induce Hck activation and transformation in our Rat-2 fibroblast model. While SF2, LAI, and Consensus Nef all bound and activated Hck, ELI Nef failed to bind to the Hck SH3 domain in vitro and did not cooperate with Hck in fibroblast transformation. Molecular modeling identified three residues in the core region of SF2 Nef (Ala83, His116, and Tyr120) which are substituted in ELI with Glu, Asn, and Ile, respectively. Two of these residues (Ala83 and Tyr120) form part of the hydrophobic pocket that contacts Ile 96 in the RT loop of the Hck SH3 domain in the Nef-SH3 crystal structure. Substitution of SF2 Nef Tyr120 with Ile completely abolished Hck recruitment and activation. In a complementary experiment, substitution of ELI Ile120 with Tyr partly restored ELI Nef-induced Hck activation and transformation in Rat-2 cells. Hck activation increased further by substitution of ELI Glu83 with Ala and Asn116 with His, suggestive of a supportive role for these residues in Hck binding. This study provides the first biological evidence that the HIV-1 Nef hydrophobic pocket is critical to Hck recruitment and activation in vivo. Targeting the Nef hydrophobic pocket with a small molecule may be sufficient to disrupt Nef signaling through Hck in HIV-infected macrophages, slowing disease progression. 相似文献
5.
Cells from the myeloid lineage, namely macrophages, dendritic cells and osteoclasts, develop podosomes instead of stress fibers and focal adhesions to adhere and migrate. Podosomes share many components with focal adhesions but differ in their molecular organization, with a dense core of polymerized actin surrounded by scaffolding proteins, kinases and integrins. Podosomes are found either isolated both in macrophages and dendritic cells or arranged into superstructures in osteoclasts. When osteoclasts resorb bone, they form an F-actin rich sealing zone, which is a dense array of connected podosomes that firmly anchors osteoclasts to bone. It delineates a compartment in which protons and proteases are secreted to dissolve and degrade the mineralized matrix. Since Rho GTPases have been shown to control F-actin stress fibers and focal adhesions in mesenchymal cells, the question of whether they could also control podosome formation and arrangement in cells from the myeloid lineage, and particularly in osteoclasts, rapidly emerged. This article considers recent advances made in our understanding of podosome arrangements in osteoclasts and how Rho GTPases may control it. 相似文献
6.
Xiao-Yun Liu Yue-Feng Yang Chu-Tse Wu Qun-Wei Zhang Qing-Fang Li Hua Wang Li-Sheng Wang 《Biochemical and biophysical research communications》2010,393(4):637-808
Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML. 相似文献
7.
8.
9.
Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species. 相似文献
10.
Irene Colavita Nicola Esposito Concetta Quintarelli Ersilia Nigro Fabrizio Pane Margherita Ruoppolo Francesco Salvatore 《Proteomics》2013,13(16):2414-2418
In the present study, we used a functional proteomic approach to identify Annexin A1 (Anxa1) interacting proteins in the Philadelphia‐positive KCL22 cell line. We focused on Anxa1 because it is one of the major proteins upregulated in imatinib‐sensitive KCL22S cells versus imatinib‐resistant KCL22R. Our proteomic strategy revealed 21 interactors. Bioinformatic analysis showed that most of these proteins are involved in cell death processes. Among the proteins identified, we studied the interaction of Anxa1 with two phosphatases, Shp1 and Shp2, which were recently identified as biomarkers of imatinib sensitivity in patients affected by chronic myeloid leukemia. Our data open new perspectives in the search for annexin‐mediated signaling pathways and may shed light on mechanisms of resistance to imatinib that are unrelated to Bcr‐Abl activity. All mass spectrometry data have been deposited in the ProteomeXchange with identifier PXD000030. 相似文献
11.
Margot Tertrais Claire Bigot Emmanuel Martin Renaud Poincloux Arnaud Labrousse Isabelle Maridonneau-Parini 《European journal of cell biology》2021,100(4):151161
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure. 相似文献
12.
Qing-Hua Min Xiao-Zhong Wang Jing Zhang Qing-Gen Chen Shu-Qi Li Xiao-Qing Liu Jing Li Jing Liu Wei-Ming Yang Yu-Huan Jiang Yan-Mei Xu Jin Lin Qiu-Fang Gao Fan Sun Lei Zhang Bo Huang 《Experimental cell research》2018,362(2):386-393
Chronic myeloid leukemia (CML) is a malignant disorder of hematopoietic stem/progenitor cells. Majority of patients can be effectively treated with tyrosine kinase inhibitors (TKIs) such as imatinib, but a portion of patients will develop drug resistance. Accumulated evidences have identified exosomes in cancer as promoters of tumor progression. Herein, we found that exosomes derived from imatinib resistant CML cells can be internalized into sensitive CML cells and confer drug-resistance traits. We also demonstrated a significant higher level of miR-365 in exosomes derived from drug-resistant CML cells compared with those from sensitive ones using microarray and qRT-PCR. The imatinib sensitive CML cells transfected with pre-miR-365 displayed lower chemosensitivity and apoptosis rate compared with controls. We further confirmed that exosomal transfer of miR-365 induced drug resistance by inhibiting expression of pro-apoptosis protein in sensitive CML cells. In conclusion, our study reveals that exosomes mediate a horizontal transfer of drug-resistant trait in chronic myeloid leukemia cell by delivering miR-365. 相似文献
13.
Jessica R.B. Musselman Cindy K. Blair James R. Cerhan Phuong Nguyen Betsy Hirsch Julie A. Ross 《Cancer epidemiology》2013,37(4):410-416
BackgroundCigarette smoking is an established risk factor for adult myeloid leukemia, particularly acute myeloid leukemia (AML), but less is known about the nature of this association and effects of smoking cessation on risk.MethodsIn a large population-based case–control study of myeloid leukemia that included 414 AML and 185 chronic myeloid leukemia (CML) cases and 692 controls ages 20–79 years, we evaluated risk associated with cigarette smoking and smoking cessation using unconditional logistic regression methods and cubic spline modeling.ResultsAML and CML risk increased with increasing cigarette smoking intensity in men and women. A monotonic decrease in AML risk was observed with increasing time since quitting, whereas for CML, the risk reduction was more gradual. For both AML and CML, among long-term quitters (≥30 years), risk was comparable to non-smokers.ConclusionsOur study confirms the increased risk of myeloid leukemia with cigarette smoking and provides encouraging evidence of risk attenuation following cessation. 相似文献
14.
Background
Leptin and adiponectin receptors mediate the role of leptin in stimulating the growth of leukemic cells and the protective function of adiponectin undertaken in several malignancies such as leukemia. In this study, we investigated the involvement of the expression of leptin and adiponectin receptors in chronic myeloid leukemia (CML) pathogenesis.Methods
The expression of leptin receptor isoforms, OB-Rt, OB-Ra, and OB-Rb, and the expression of adiponectin receptors, AdipoR1 and AdipoR2, were measured as mRNA levels in two CML cell lines (K562 and Meg-01) and 20 CML patients and 24 healthy controls by using RT-PCR.Results
OB-Rt and OB-Ra isoforms expression of the leptin receptors were found to be significantly lower in Meg-01 cell lines than K562 cells. All leptin receptors were downregulated in CML patients and more particularly OB-Rb level was found to be undetectably low in normal PBMC as well as in CML patients. AdipoR1 expression level was higher in Meg-01 than in K562, whereas AdipoR2 level was found to be unchanged in both cell lines. Interestingly, while AdipoR1 expression increased in CML patients, AdipoR2 decreased. Moreover, imatinib therapy did not affect both leptin and adiponectin isoform expressions.Conclusion
While the decrease in leptin receptor levels in CML patients was confirmed, the increase in AdipoR1 levels and relevant decrease in AdipoR2 levels depicted their possible involvement in CML pathogenesis. This suggests different functions of adiponectin receptors in CML development. 相似文献15.
Griffiths SD Burthem J Unwin RD Holyoake TL Melo JV Lucas GS Whetton AD 《Molecular biotechnology》2007,36(2):81-89
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell disease, associated with a t(9, 22) chromosomal translocation
leading to formation of the BCR/ABL chimeric protein, which has an intrinsic tyrosine kinase activity. Recently, the BCR/ABL
tyrosine kinase inhibitor imatinib mesylate (imatinib) has been successfully used clinically, although, disease relapse can
still occur. The precise detail of the mechanism by which CML cells respond to imatinib is still unclear. We therefore systematically
examined the effects of imatinib on the primitive CML cell proteome, having first established that the drug inhibits proliferation
and induces increased apoptosis and differentiation. To define imatinib-induced effects on the CML proteome, we employed isobaric
tag peptide labeling (iTRAQ) coupled to two-dimensional liquid chromatography/tandem mass spectrometry. Given the limited
clinical material available, the isobaric tag approach identified a large population of proteins and provided relative quantification
on four samples at once. Novel consequences of the action of imatinib were identified using this mass spectrometric approach.
DEAD-box protein 3, heat shock protein 105 kDa, and peroxiredoxin-3 were identified as potential protein markers for response
to imatinib.
Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.
Stephen D. Griffiths and John Burthem contributed equally to this publication. This work is supported by The Leukaemia Research
Fund (UK). 相似文献
16.
17.
An active Src kinase-beta-actin association is linked to actin dynamics at the periphery of colon cancer cells 总被引:2,自引:0,他引:2
Avizienyte E Keppler M Sandilands E Brunton VG Winder SJ Ng T Frame MC 《Experimental cell research》2007,313(15):3175-3188
Src controls the dynamic actin cytoskeleton in fibroblasts and in cancer cells, although it is not known how direct its effects are. Using FRET/FLIM imaging, we found that wild type Src associates directly, or indirectly, with peripheral beta-actin at integrin adhesions after serum stimulation, and that an active Src kinase domain is essential. Beta-actin can be directly tyrosine-phosphorylated by Src in vitro, and in a Src-dependent manner in cells. Moreover, beta-actin dynamics are suppressed when Src is rendered kinase-inactive. Surprisingly, debilitating mutations in the Src SH2 or SH3 domains do not suppress association of Src with beta-actin. This may therefore be an example of a spatially regulated Src kinase/substrate interaction that is controlling peripheral actin dynamics. Interestingly, there is no FRET between Src and beta-actin at cadherin-mediated cell-cell contacts, despite apparent co-localization there, demonstrating precise spatial specificity of Src/beta-actin complexes. 相似文献
18.
Biological agents have long been used in the treatment of cancer, and interferon-alpha was the first human cytokine to be widely studied in this setting. Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder for which interferon-alpha has demonstrated substantial activity. In the 1980s interferon-alpha became first-line therapy for patients with chronic-phase CML, not eligible for allogeneic stem cell transplantation. Following the discovery of the leukemic oncogene BCR/ABL and its causal association with CML, the potent BCR/ABL tyrosine kinase inhibitor imatinib mesylate was developed. Imatinib proved to be superior to interferon-alpha in all outcome measures, making imatinib the new standard of care for patients with CML. There is both clinical and laboratory evidence suggesting imatinib therapy alone is not curative in CML, whereas IFN has induced a low but reproducible curative effect in some patients. This unique activity may be the basis for the reincorporation of IFN into the management of CML. These observations may be best explained by imatinib's negligible activity against the leukemic stem cell (LSC) population. This review discusses the history of interferon-alpha in the treatment of CML, the evolution of molecularly targeted therapies, and some of the lessons we have learned from years of informative research in CML. It also explores the new challenge of managing minimal residual disease in the imatinib era, and addresses the promising role for LSC-directed therapies in the future treatment of CML. 相似文献
19.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs. 相似文献