首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A new approach based on local interaction between cancer and tissue cells was applied to the problem of the onset and growth of solid tumors in homogeneous tissues and effects associated with dramatic changes in tumor growth after crossing the boundary between different tissues. The characteristic sizes and growth rates of spherical tumors, the points of the beginning and the end of spherical growth, and the further development of complex structures from the spherical ones (rough interface between the tumor and the host tissue, elongate outgrowths, dendritic structures, and metastases) were inferred assuming that the reproduction rate of a population of cancer cells is a nonmonotone function of their local concentration and thus of the local curvature of the tumor surface.  相似文献   

2.
There is a growing acceptance that tumor-infiltrating myeloid cells play an active role in tumor growth and mast cells are one of the earliest cell types to infiltrate developing tumors. Mast cells accumulate at the boundary between healthy tissues and malignancies and are often found in close association with blood vessels within the tumor microenvironment. They express many pro-angiogenic compounds, and may play an early role in angiogenesis within developing tumors. Mast cells also remodel extracellular matrix during wound healing, and this function is subverted in tumor growth, promoting tumor spread and metastasis. In addition, mast cells modulate immune responses by dampening immune rejection or directing immune cell recruitment, depending on local stimuli. In this review, we focus on key roles for mast cells in angiogenesis, tissue remodelling and immune modulation and highlight recent findings on the integral role that mast cells play in tumor growth. New findings suggest that mast cells may serve as a novel therapeutic target for cancer treatment and that inhibiting mast cell function may lead to tumor regression.  相似文献   

3.
Cellular senescence is a state of growth arrest where nonproliferative cells accumulate over time in the aging microenvironment under multiple external factors. Senescent cells exert a double-edged sword effect in an autocrine or paracrine manner: physiologically, they contribute to tissue development, prevent the multiplication of damaged cells and contribute to tissue repair and tumor suppression while favoring the onset of age-related diseases, including tumors. The microbiota in human tissues is intricately linked to cellular senescence and is reportedly present in the tissues of various tumors (including pancreatic tumors), closely associated with tumorigenesis and progression. The microbiota can induce cells to undergo senescence, and their long-term effects can assist senescent cells in transforming and successfully escaping senescence, contributing to tumorigenesis and progression. Here, we focus on the correlation between the microbiota, cellular senescence, and pancreatic cancer to provide novel ideas for the study and therapy of pancreatic cancer.  相似文献   

4.
Motility cues in the tumor microenvironment   总被引:2,自引:0,他引:2  
It is now increasingly recognized that the microenvironment plays a critical role in the progression of tumors. Perhaps less obvious is the concept that the microenvironment may share responsibility in determining the "malignant" traits of tumor cells, i.e. invasiveness and metastasis. If tumors are tissues, however unbalanced, rather than a collection of "malignant" cells recruiting local resources for the purpose of growth, then it is inevitable that tumor cells will respond to local stimuli. These stimuli include cues for motility and migration, which normally appear in tissues undergoing formation, remodeling or healing. Carcinoma cells are likely to be sensitive to the motility cues that normally regulate epithelial morphogenetic movements such as ingression, delamination, invagination, and tube or sheet migration. "Malignant" tumors, then, can be redefined as those in which these cues arise more frequently or act more effectively. Here, we expand on this view and propose that invasion and metastasis may be the outcome of tumor cell responses to microenvironmental motility cues. Understanding how such motility cues arise and act, both in normal and tumor tissue, should be a high priority in cancer research.  相似文献   

5.
Proliferation requires that cells accumulate sufficient biomass to grow and divide. Cancer cells within tumors must acquire a variety of nutrients, and tumor growth slows or stops if necessary metabolites are not obtained in sufficient quantities. Importantly, the metabolic demands of cancer cells can be different from those of untransformed cells, and nutrient accessibility in tumors is different than in many normal tissues. Thus, cancer cell survival and proliferation may be limited by different metabolic factors than those that are necessary to maintain noncancerous cells. Understanding the variables that dictate which nutrients are critical to sustain tumor growth may identify vulnerabilities that could be used to treat cancer. This review examines the various cell-autonomous, local, and systemic factors that determine which nutrients are limiting for tumor growth.  相似文献   

6.
Tao Q  Li D  Zhang L  Luo S 《PloS one》2012,7(6):e39936
The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors.  相似文献   

7.
The inter- and intra-tumoral metabolic phenotypes of tumors are heterogeneous, and this is related to microenvironments that select for increased glycolysis. Increased glycolysis leads to decreased pH, and these local microenvironment effects lead to further selection. Hence, heterogeneity of phenotypes is an indirect consequence of altering microenvironments during carcinogenesis. In early stages of growth, tumors are stratified, with the most aggressive cells developing within the acidic interior of the tumor. However, these cells eventually find themselves at the tumor edge, where they invade into the normal tissue via acid-mediated invasion. We believe acid adaptation during the evolution of cancer cells in their niche is a Rubicon that, once crossed, allows cells to invade into and outcompete normal stromal tissue. In this study, we illustrate some acid-induced phenotypic changes due to acidosis resulting in more aggressiveness and invasiveness of cancer cells.  相似文献   

8.
We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors.  相似文献   

9.
10.
MOTIVATION: On the histological level the differentiation of normal epithelial tissues is well known. The phenomenon of dedifferentiation, which occurs as cells develop towards malignancy is also well described. To identify an epithelial tumor-specific proteomic profile as well as to measure the proximities between we used data from tumor tissue and adjacent normal tissue microdissected from head and neck and colon cancer samples which were analyzed using ProteinChip technology and performed a bioinformatic meta-analysis on the resulting four complex datasets. RESULTS: All four groups could be identified based on their proteomic signatures and the tumor tissues were found to be more similar to one another than to the normal epithelial tissue from which they progressed. This study shows at the proteomic level that changes in the histological features of tumors as compared to the tissues from which they arise are reflected in the convergence of proteomic pattern during the development to cancer.  相似文献   

11.
12.
Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r 1 and r 2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application.  相似文献   

13.
14.
15.
Tumor-host interactions: the role of inflammation   总被引:1,自引:0,他引:1  
It is well established that interactions between tumor cells and the host tissue stroma play a key role in determining whether and how any given solid malignancy will develop. In most cases, tumor cells hijack stromal cell functions for their own benefit and ultimately dictate the rules of engagement to the host tissue microenvironment. However, the contribution of the different stromal cell components to tumor growth remains to be clarified. Because most solid tumors are accompanied by a local inflammatory response, it has long been thought that inflammation and carcinogenesis are related. If formal proof that cancer can be initiated by inflammation in the absence of exogenous carcinogens is still lacking, there is abundant evidence that the inflammatory response can play a central role in modulating tumor growth and progression. This review will discuss some of the mechanisms whereby inflammation can both enhance and inhibit tumor growth.  相似文献   

16.
Huber PE  Debus J 《Radiation research》2001,156(3):301-309
Local tumor therapy using focused ultrasonic waves may become an important treatment option. This technique exploits the ability of mechanical waves to induce thermal and nonthermal effects noninvasively. The cytotoxicity to cultured cells and biological tissues in vivo that results from exposure to ultrasonic shock waves is considered to be a nonthermal effect that is partly a consequence of ultrasound-induced cavitation. Cavitation is defined as the formation of bubbles during the negative wave cycle; their subsequent oscillation and/or violent implosion can affect surrounding structures. To investigate cavitational effects in cells and tissues, defined cavitation doses must be applied while ideally holding all other potential ultrasound parameters constant. The application of independent cavitation doses has been difficult and has yielded little knowledge about quantitative cavitation-tissue interactions. By using a special shock-wave pulse regimen and laser optical calibration in this study, we were able to control the cavitation dose independently of other physical parameters such as the pressure amplitudes, and averaged acoustic intensity. We treated Dunning prostate tumors (subline R3327-AT1) transplanted into Copenhagen rats with shock waves at three cavitation dose levels and then determined the tumor growth delay and the histopathological changes. All of the treated animals exhibited a significant tumor growth delay compared to the controls. Higher cavitation doses were associated with a greater delay in the growth of the tumor and more severe effects on tumor histopathology, such as hemorrhaging, tissue disruption, and necrosis. In vitro, the cavitation dose level correlated with the amount of radical formation. We concluded that the process of acoustic cavitation was responsible; higher cavitation doses caused greater effects in tumors both in vivo and in vitro. These findings may prove important in local tumor therapy and other applications of ultrasound such as ultrasound-mediated drug delivery.  相似文献   

17.
18.
The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors.  相似文献   

19.
Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.  相似文献   

20.
The behavior and fate of cells in tissues largely rely upon their cross-talk with the tissue microenvironment including neighboring cells, the extracellular matrix (ECM), and soluble cues from the local and systemic environments. Dysregulation of tissue microenvironment can drive various inflammatory diseases and tumors. The ECM is a crucial component of tissue microenvironment. ECM proteins can not only modulate tissue microenvironment but also regulate the behavior of surrounding cells and the homeostasis of tissues. As a nonstructural ECM protein, periostin is generally present at low levels in most adult tissues; however, periostin is often highly expressed at sites of injury or inflammation and in tumors within adult organisms. Current evidence demonstrates that periostin actively contributes to tissue injury, inflammation, fibrosis and tumor progression. Here, we summarize the roles of periostin in inflammatory and tumor microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号