首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Potassium-deficiency was induced in rats by dietary deprivation of potassium. The animals became polyuric and urine osmolality decreased more then three-fold compared to controls. Urinary excretion of prostaglandin E2 (PGE2) and prostaglandin F (PGF) did not increase during 2 weeks of potassium depletion. Partial inhibition of renal prostaglandin synthesis by meclofenamate did not increase the urine osmolality after water deprivation. These results make unlikely the hypothesis that the polyuria of potassium-deficiency, is the result of enhanced renal synthesis of prostaglandins with subsequent antagonism of the hydro-osmotic effect of vasopressin. Male animals consistently excreted less PGE2 than female animals.  相似文献   

2.
Although previous studies from this and other laboratories have shown that urinary prostaglandin E excretion (UPGEV) can vary independent of urine flow rate, recent studies during water diuresis in the conscious dog have suggested that high urine flow rate per se may increase UPGEV. To examine the effect of urine flow rate on UPGEV we administered either mannitol, chlorothiazide or Ringer's solution to mongrel dogs and measured UPGEV. During anesthesia neither mannitol or chlorothiazide increased UPGEV. There was, however, a consistent increase with all three agents in awake animals. This increase in UPGEV was independent of alterations in glomerular filtration rate. There was a consistent increase in urinary sodium excretion and decrease in urinary osmolality with all three agents. The changes in PGE, however, were similar to those found during water diuresis when no increase in sodium excretion was found. It is not presently clear whether these findings reflect a true increase in renal PGE synthesis due to some change in flow or pressure within the renal medulla or rather represent unchanged PGE synthesis by renal tubular cells, the high tubule fluid flow rate causing increased entry into the tubular lumen in contrast to the renal interstitium.  相似文献   

3.
Exogenous prostaglandins (PGs) have been shown to have differing effects on frog lung contractility. In this study, prostaglandin synthesis was measured in lung tissues from warm-acclimated (WA, 22 degrees C) and cold-acclimated (CA, 5 degrees C) American bullfrogs, Rana catesbeiana, incubated for 30 min at 5 degrees or 22 degrees C. Media were assayed by radioimmunoassay for PGE2, PGF2 alpha, 6-keto PGF 1 alpha (the metabolite of PGI2), and thromboxane (TX)B2 (the metabolite of TXA2). PGE2 was produced in greatest quantity by tissues from WA and CA animals, at both incubation temperatures. Epinephrine stimulated PGE2, PGF2 alpha, and TXB2 synthesis at 22 degrees C but only stimulated PGE2 production at 5 degrees C. In tissues from CA frogs, epinephrine did not stimulate prostaglandin synthesis at either incubation temperature. Ibuprofen (10(-5) M) inhibited basal and epinephrine-stimulated prostaglandin synthesis in tissues from WA frogs incubated at 22 degrees C. The beta receptor antagonist propranolol (10(-6) M) blocked the epinephrine-stimulated synthesis of PGE2, PGF2 alpha and TXB2, suggesting epinephrine stimulates prostaglandin synthesis through beta receptor activation. The absence of stimulation by epinephrine in lung from CA animals, but not in 5 degrees C incubations of tissues from WA animals, suggests that a modification of beta receptors occurs during prolonged cold exposure.  相似文献   

4.
Biological fluids from several sources (e.g. blood, fetal urine, amniotic fluid) have been shown to contain factors that modulate prostaglandin (PG) synthesis. In this study, we investigated the possibility that peritoneal fluid contains substances that may regulate PG synthesis. Peritoneal fluids were obtained from women undergoing diagnostic laparoscopy for infertility. Fluids from women without evident pelvic pathology were incubated with prostaglandin synthase prepared from bull seminal vesicles in the presence of excess arachidonic acid, and the production of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha was quantified by specific radioimmunoassay. The untreated fluids inhibited potently the synthesis of PGE2 but such inhibitory activity was not extractable by chloroform:methanol. An ultrafiltrate of the fluid containing molecules smaller than 10,000 Daltons stimulated PGF2 alpha synthesis but this activity was also lost after extraction. The extracted fluid did, however, stimulate the synthesis of prostacyclin (as reflected by 6-keto-PGF1 alpha).  相似文献   

5.
The influences of sex and acute inflammation on prostaglandin biosynthesis in rabbit gallbladder were examined by radiochromatography. Male rabbit gallbladder microsomes converted small amounts of labelled arachidonate to total prostaglandin synthesis with PGE2, 6-keto PGF1 alpha (stable metabolite of PGI2) and PGF2 alpha as the major products synthesized. Microsomes from the male rabbit gallbladder inflamed by bile duct ligation for 3 days increased total prostaglandin synthesis five-fold with 6-keto PGF1 alpha being the major prostaglandin produced. Female rabbit gallbladder microsomes converted three times more arachidonate to total prostaglandin synthesis than did microsomes from the male rabbit. Bile duct ligation did not alter total prostaglandin biosynthesis in the female rabbit gallbladder, but significantly decreased synthesis of PGE2, thromboxane B2 and PGF2 alpha and increased synthesis of 6-keto PGF1 alpha. These data suggest that although bile duct ligation had different effects on male and female gallbladder total prostaglandin synthesis, 6-keto PGF1 alpha is the major product induced by this stimulus for acute inflammation.  相似文献   

6.
Previous studies have shown that the urinary excretion of prostaglandin (PG) F2 alpha is stimulated by potassium (K) loading. Because changes of sodium chloride (NaCl) intake also affect renal PG production, in this study we investigated the interaction between the effect of K and that of concomitant reduction of Na and Cl intake. The urinary excretion of PGF2 alpha and PGE2 was measured in 12 groups of female rats on normal, high or low K intake. Na and Cl intake were adjusted so that rats had normal intake (controls, C), were selectively Cl depleted (CD), selectively Na depleted (ND) or Na and Cl depleted (NCD). In rats with normal K intake, urinary PGF2 alpha was not modified by changes of Na or Cl intake, whereas PGE2 was increased in by Cl depletion (in both NCD or CD groups). Potassium chloride loading increased urinary PGF2 alpha and selective Na depletion (ND group) induced a further increase. On the other hand, PGF2 alpha was not stimulated when K load was associated with Cl depletion. Urine PGF2 alpha was directly correlated with plasma aldosterone and urinary kallikrein. Urinary PGE2 did not change with K-loading. The results suggest that PGF2 alpha participates in the renal adaptation to KCl-loading but not when K is accompanied by non-Cl anions.  相似文献   

7.
Glucocorticoids are known inhibitors of prostaglandin production. Prostaglandin E2 (PGE2) and prostacyclin (PGI2) are promoters of natriuresis and renin release. Excessive prostaglandin production, therefore, might contribute to the altered sodium balance and renin release observed in primary adrenal insufficiency. To test this hypothesis, sodium balance and prostaglandin production were measured in adrenalectomized rats and in animals receiving prostaglandin inhibitors or replacement dexamethasone. Compared to sham-operated controls, adrenalectomized rats had decreased two-day sodium balance and elevated plasma renin concentration (PRC), renal PGE2 production, and renal 6-ketoprostaglandin F1 alpha (6kPGF1 alpha, the nonenzymatic metabolite of PGI2); however, no appreciable change in aortic 6kPGF1 alpha production was observed. Dexamethasone given to adrenalectomized rats normalized PRC but had no effect on sodium balance or prostaglandin production. Likewise, prostaglandin inhibitors did not alter the sodium balance or decrease the PRC post adrenalectomy. These data confirm renal prostaglandin production is increased in adrenalectomized rats, but suggest that the elevation is not due directly to glucocorticoid deficiency. Further, PRC levels in adrenal insufficiency do not appear to be prostaglandin mediated. In conclusion, excessive renal prostaglandin production does not contribute to altered sodium balance or increased PRC in adrenalectomized rats.  相似文献   

8.
The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture.  相似文献   

9.
In view of recent findings which suggest that renal prostaglandins mediate the effect of hypoxia on erythropoietin production, we have studied whether hypoxia is a stimulus for in vitro prostaglandin synthesis. Studies were carried out in rat renal mesangial cell cultures which produce erythropoietin in an oxygen-dependent manner. Production rates of PGE2 and in specified samples also of 6-keto-PGF1 alpha, as a measure of PGI2, and PGF2 alpha were determined by radioimmunoassay after incubation at either 20% O2 (normoxic) or 2% O2 (hypoxic) in gas permeable dishes for 24 hrs. Considerable variation in PGE2 production was noted among independent cell lines. PGE2 production appeared to be inversely correlated to the cellular density of the cultures. In addition, PGE2 production was enhanced in hypoxic cell cultures. The mean increase was 50 to 60%. PGF2 alpha and 6-keto-PGF1 alpha increased by about the same rate. These results indicate that hypoxia is a stimulus for in vitro prostaglandin production.  相似文献   

10.
Estradiol-17 beta increases the production of prostaglandin F2 alpha (PGF2 alpha) in long term monolayer cell cultures of the human endometrium in a dose dependent manner. Progesterone in pharmacological dosage stimulates the syntheses of PGF2 alpha and of prostaglandin E2 (PGE2). The synthesis of prostaglandin I2 (PGI2) is not influenced by sex steroids in long term monolayer cell cultures of the human endometrium.  相似文献   

11.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

12.
PGE2 metabolism was examined in rabbit renal slices and cell suspensions from the outer medulla, enriched (TALH) and depleted (OMC) for the thick ascending limb of Henle's loop. Metabolism was negligible in intact cells, either OMC or TALH fractions. However, in OMC and TALH homogenates, transformation of PGE2 to PGF2 alpha by NADPH-dependent prostaglandin E-9 ketoreductase (PGE-9KR) was observed at a PGE2 concentration of 4 X 10(-9) M. This activity was not reversible and was enriched ten-fold in the TALH with 41% of PGE2 transformed to PGF2 alpha after 30 min incubation. PGF2 alpha formation from PGE2 could not be detected in homogenates of cortex, medulla or papilla. PGE-9KR activity, particularly in the thick ascending limb, may be a source of PGF2 alpha in urine.  相似文献   

13.
Fifteen sows were assigned to three groups of five each, according to gestational age (109 days, 114 days or labour). Two fetuses per sow were chosen at random, and amnion, allantochorion, amniochorion, amniotic fluid and fetal urine were collected. Tissues were enzymatically dispersed and incubated for 1, 2, 3 or 4 h and the prostaglandin (PG) content of the supernatant medium was measured by radioimmunoassay. In general, all placental cell types produced at least three times more prostaglandin E (PGE) and 6-keto-PGF1 alpha than PGF. Production did not vary across gestational age, except that production of 6-keto-PGF1 alpha was lower in cells collected during labour, resulting in a relative increase in PGF and PGE. Aminochorion cells had a lower de novo capacity to synthesize PG than did allantochorion or amniochorion, whereas treatment of allantochorion with preterm amniotic fluid, preterm or term fetal urine resulted in increased PG output. These results demonstrate that porcine placental cells can synthesize and metabolize prostaglandin in late gestation but suggest that their capacity to produce PGI2 (as measured by 6-keto-PGF1 alpha) is lower than for other prostaglandins during labour.  相似文献   

14.
The objective of the present investigation was to examine the influence of inhibition of renal prostaglandin synthesis on the renal clearance of inorganic sulfate, an electrolyte involved in the biotransformation of both exogenous and endogenous substrates. Homeostasis of inorganic sulfate is maintained predominantly by renal reabsorption in the proximal tubule. Using a crossover study design, the renal clearance of sulfate was assessed in conscious female Lewis rats during control periods and following the infusion of two structurally dissimilar nonsteroidal anti-inflammatory drugs, ibuprofen (IBU) and indomethacin (INDO). Animals were infused with IBU or INDO to achieve steady state concentrations of 59 +/- 8 micrograms/ml (mean +/- SD) of IBU and 22 +/- 3 micrograms/ml of INDO. At these serum concentrations, IBU and INDO produced greater than 80% decrease in the urinary excretion of prostaglandin (PG) E2. Treatment with either IBU or INDO significantly increased the renal clearance of sulfate, but did not alter the glomerular filtration rate as assessed by creatinine clearance. The role of prostaglandins in the effects of IBU and INDO on sulfate homeostasis was investigated by examining the influence of concomitant intraarterial PGE2 administration (infusion of 0.1 micrograms/min) on nonsteroidal anti-inflammatory drug-induced alterations in sulfate renal clearance. Although PGE2 alone did not significantly alter the renal clearance of inorganic sulfate or that of creatinine, the PGE2 infusion abolished the effects of IBU on sulfate renal clearance. Concomitant PGE2 administration also significantly increased the sulfate reabsorption rate in INDO-treated animals; other parameters were not significantly changed, although the fractional reabsorption of sulfate tended to increase (P = 0.17). The reason for the less pronounced effect on PGE2 on the INDO-sulfate interaction is as yet unknown, but may be partly due to additional mechanisms involved in the INDO-induced alterations in sulfate clearance. The results of these studies suggest that prostaglandin inhibition represents one mechanism whereby IBU can alter the renal clearance of inorganic sulfate.  相似文献   

15.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

16.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concentrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 +/- 106 to 1035 +/- 79 mosmol/kg X H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 +/- 14.0 to 205.5 +/- 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg X hr), renal PGE2 excretion was reduced to 22.3 +/- 5.1 pg/min prior to micropuncture and it remained low at 8.9 +/- 1.8 pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 +/- 122 before and 1782 +/- 96 mosmol/kg X H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

17.
Removal of the salivary glands (SALX) in rats has been shown to increase the susceptibility of gastric mucosa to ulcerogens. In the present study, we have investigated the role of specific salivary glands in this response. In addition, we have examined whether a functional link exists between the salivary glands, epidermal growth factor (EGF), and prostaglandin E2 (PGE2) by determining whether SALX decreases the responsiveness of the mucosa to the protective actions of either of both of these agents. Removal of the parotid salivary glands did not significantly increase ulceration in response to intragastric administration of 100% w/v ethanol. Animals were examined 60 min after ethanol administration. Removal of the submandibular-sublingual gland complexes was associated with a significant increase in the area of mucosal damage and a decrease in gastric pit depth in ethanol-treated animals when compared with sham-operated control rats. Furthermore, in both SALX and control animals, exogenous PGE2 and EGF resulted in a dose-dependent reduction in both groups of animals, although the protective effects of PGE2 and EGF were attenuated in SALX rats. PGE2 and EGF administered in combination resulted in the same degree of protection in both SALX and control rats. Sialoadenectomy resulted in a reduction in mucosal PGE2 synthesis. EGF administration did not consistently increase mucosal PGE2 synthesis. Conversely, sialoadenectomy did not reduce mucosal levels of EGF nor did exogenous PGE2 consistently increase salivary or mucosal content of EGF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have hypothesized that two of the endogenously synthesized endometrial prostaglandins (PGs), prostaglandin F2 alpha (PGF2 alpha), and prostaglandin E1 (PGE1), play a regulatory role in growth control of the rabbit endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used to examine the possible role of these PGs in the mechanism of action of 17 beta-estradiol on DNA synthesis. Towards this end, binding, second messenger and DNA synthesis experiments were performed. 17 beta-estradiol stimulation resulted in a time dependent (optimal: approximately 6 h) and 17 beta-estradiol concentration dependent (optimal: approximately 10(-7) M 17 beta-estradiol in phenol red-containing medium) increase in [3H]PGF2 alpha binding. Scatchard type analysis of the binding data revealed an increase in receptor number while the receptor affinity for [3H]PGF2 alpha remained the same as in the control treated cultures. This 17 beta-estradiol stimulated increase in PGF2 alpha receptor allowed a suboptimal concentration of PGF2 alpha (10(-9) M) to increase intracellular levels of inositol polyphosphates, while by itself this concentration of PGF2 alpha caused no significant change in intracellular inositol polyphosphate levels. 17 beta-estradiol, alone among the several studied steroid hormones, could increase [3H]PGF2 alpha binding. Proliferation studies revealed that, in these primary cultures of rabbit endometrium, 17 beta-estradiol could increase DNA synthesis but not in the presence of indomethacin, unless PGF2 alpha was added to the medium at a concentration (10(-10) M) near or above what is normally accumulated in the medium by these cultures. In the absence of 17 beta-estradiol stimulation, addition of these same low concentrations of PGF2 alpha had no effect on DNA synthesis. Apparently, through its effect on the PGF2 alpha receptor, 17 beta-estradiol enhances the PGF2 alpha stimulated DNA synthesis response approximately 100 fold. The DNA synthesis induced by 17 beta-estradiol can be inhibited by PGE1, as can PGF2 alpha-induced DNA synthesis. We propose that 17 beta-estradiol may be mediating its mitogenic effect through an alteration of the prostaglandin agonist:antagonist control of proliferation in rabbit endometrial cultures. In addition we suggest that, if 17 beta-estradiol acts to increase PGF2 alpha, receptors as part of its mode of action, this may be of importance in other tissues possessing both prostaglandin and 17 beta-estradiol receptors.  相似文献   

19.
Prostaglandin F(2alpha) is used in dairy herd management because of its luteolytic properties and for its direct effect on the myometrium in cows diagnosed with endometritis. Prostaglandin E(2) has a contractile effect on the bovine uterus. In human medicine, prostaglandin E(2) is routinely used to maintain labor and to ripen the cervix. We hypothesized, that a combination of prostaglandin F(2alpha) and prostaglandin E(2) would provoke a long-lasting increase in intrauterine pressure (IUP) and uterine motility as compared to either prostaglandin group. Intrauterine pressure was recorded during the diestrus of eight lactating dairy cows using a transcervically placed intraluminal pressure microtransducer. After recording of physiologic uterine motility for 30min, prostaglandins (DL-cloprostenol, PGE(2), PGE(2) in combination with D-cloprostenol) or placebo were administered, followed by a 2h recording period. Significant differences were found for the area under the curve, the mean amplitude and the intrauterine pressure, whereas the number of pressure waves did not differ significantly among treatments. Peak values for area under the curve and mean amplitude were found during the first 15min for the combination of PGE(2) and D-cloprostenol. During the last 15min of the recording session, area under the curve and mean amplitude were increased only for the combination of PGE(2) and D-cloprostenol as compared to placebo. Although PGF(2alpha) and PGE(2) provoke an increase in intrauterine pressure, only their combination guarantees a significant effect over a 2h recording period.  相似文献   

20.
On the basis of acute experiments in animals, a role for prostaglandin E (PGE) in the regulation of urinary sodium excretion has been suggested. Limited information is available, however, concerning the possible role of PGE in chronic adjustments to sodium intake. These studies were designed to determine whether chronic changes in sodium balance would modify renal PGE excretion and whether partial inhibition of prostaglandin synthesis would after the ability of the kidney to adjust to an alteration in sodium intake. Thus, we measured sodium and PGE excretion in rabbits on chronic high and low salt diets before and after inhibition of prostaglandin synthesis with indomethacin or meclofenamate. Although the alterations in salt intake resulted in large changes in sodium excretion there was no significant change in urinary PGE excretion. After administration of either indomethacin or meclofenamate for several days there was a significant fall in PGE excretion, but no significant change in sodium excretion. These results suggest that in the rabbit 1) chronic changes in sodium excretion can occur without modifying PGE excretion (and presumably renal PGE synthesis) and 2) inhibition of PGE synthesis does not impair the kidney's ability to adjust to a chronic high or low sodium intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号