首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary By differentiation of substrate specificity, pH optimum range, and sensitivity to various inhibitors, 2 isoenzymes of acid phosphatase in bone cells have been studied at the electron-microscopic level. When p-nitrophenyl phosphate was used for the substrate, the demonstrable enzyme activity was affected by neither tartrate nor sodium fluoride. The reaction product, when incubated at pH 5–6, was detected in all sites along the pathway for the biosynthesis of acid phosphatase in the osteoclast, including the perinuclear space, cisternae of the endoplasmic reticulum, Golgi complex, various vesicles, and vacuoles. In the osteoclasts attached to bone, the enzymatic activity was demonstrated at the extracellular ruffled border and on the eroded bone surface. Reaction products became confined to lysosomes and extracellular ruffled border when incubated at pH 6–7. Unattached osteoclasts showed a similar intracytoplasmic localization of enzyme as the attached ones, except for the absence of the extracellular enzyme activity. The mononuclear, immature type of osteoclast also resembled the mature osteoclast in terms of enzymatic localization. Except for the osteoclasts, the acid p-nitrophenyl phosphatase activity was restricted to lysosomal vesicles in various bone cells, monocytes, and macrophages. Such activity was inhibited by adding 50 mM tartrate to the p-nitrophenyl phosphate medium. When -glycerophosphate or p-nitrocatechol sulfate was the substrate, most of the reaction product was localized intracellularly. Unlike the acid p-nitrophenyl phosphatase, the acid -glycerophosphatase or arylsulfatase activity in osteoclasts and other bone cells was inhibited completely by 10 mM tartrate or 10 mM sodium fluoride. Even preincubation of 100 mM tartrate in the buffer inhibited -glycerophosphatase activity completely, but p-nitrophenyl phosphatase activity was inhibited incompletely. Consequently, our results suggest that acid p-nitrophenyl phosphatase is a useful cytochemical marker for identification of the osteoclast family at electron-microscopic levels of resolution.  相似文献   

2.
The Meiothermus ruber alkaline phosphatase gene was cloned, expressed in Escherichia coli cells, and sequenced. The enzyme precursor, including the putative signal peptide, was shown to consist of 503 residues (deduced molecular mass 54,229 Da). The recombinant enzyme showed the maximal activity at 60-65 degrees C and pH 11.0 and had K(m) = 0.055 mM as estimated with p-nitrophenyl phosphate (pNPP). The enzyme proved to be moderately thermostable, retaining 50% activity after 6 h incubation at 60 degrees C and being completely inactivated in 2 h at 80 degrees C. In substrate specificity assays, the highest enzymic activity was observed with pNPP and dATP. Vanadate, inorganic phosphate, and SDS inhibited M. ruber alkaline phosphatase, while thiol-reducing agents had virtually no effect. The enzymic activity strongly depended on exogenous Mg2+ and declined in the presence of EDTA.  相似文献   

3.
The presence of a Zn2+-dependent acid p-nitrophenyl phosphatase (EC 3.1.3.2) in bovine liver was described. The enzyme was purified to apparent homogeneity and migrates as a single band during electrophoresis on polyacrylamide gel. The enzyme requires Zn2+ ions for catalytic activity, other bivalent cations have little or no effect. The enzyme, of Mr 118,000, optimum pH 6-6.2 and pI 7.4-7.5, was inhibited by EDTA, tartrate, adenine and ATP, but not by fluoride. The common phosphate esters are poor substrates for the enzyme, which hydrolyses preferentially p-nitrophenyl phosphate and o-carboxyphenyl phosphate. The Zn2+-dependent acid p-nitrophenyl phosphatase of bovine liver was different from the high-Mr acid phosphatases previously detected in mammalian tissues.  相似文献   

4.
A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.  相似文献   

5.
Human liver acid phosphatases.   总被引:2,自引:0,他引:2  
Human liver contains three chromatographically distinct forms of non-specific acid phosphatase (EC 3.1.3.2). Acid phosphatases I, II and III have molecular weights of greater than 200 000, of 107 000, and of 13 400, respectively. Following partial purification, isoenzyme II was obtained as a single activity band, as assessed by activity staining with p-nitrophenyl phosphate and alpha-naphthyl phosphate on polyacrylamide gels run at several pH values. With 50mM p-nitrophenyl phosphate as a substrate, enzymes II and III exhibit plateaus of activity over the pH range 3 - 5 and 3.5 - 6, respectively.Acid phosphatase II is not significantly inhibited by 0.5% formaldehyde. The activity of human liver acid phosphatase II and of human prostatic acid phosphatase towards several substrates is compared. The liver enzyme, is marked contrast to the prostatic enzyme, does not hydrolyze O-phosphoryl choline.  相似文献   

6.
Ten Cryptococcus strains were screened for phytase activity, of which the Cryptococcus laurentii ABO 510 strain showed the highest level of activity. The cell wall-associated enzyme displayed temperature and pH optima of 62 degrees C and 5.0, respectively. The enzyme was thermostable at 70 degrees C, with a loss of 40% of its original activity after 3 h. The enzyme was active on a broad range of substrates, including ATP, D-glucose 6-phosphate, D-fructose 1,6-diphosphate and p-nitrophenyl phosphate (p-NPP), but its preferred substrate was phytic acid (K(m) of 21 microM). The enzyme activity was completely inhibited by 0.5 mM inorganic phosphate or 5 mM phytic acid, and moderately inhibited in the presence of Hg(2+), Zn(2+), Cd(2+) and Ca(2+). These characteristics suggest that the Cry. laurentii ABO 510 phytase may be considered for application as an animal feed additive to assist in the hydrolysis of phytate complexes to improve the bioavailability of phosphorus in plant feedstuff.  相似文献   

7.
Purified chondrocytic alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) from bovine fetal epiphyseal cartilage hydrolyzes a variety of phosphate esters as well as ATP and inorganic pyrophosphate. Optimal activities for p-nitrophenyl phosphate, ATP and inorganic pyrophosphate are found at pH 10.5, 10.0 and 8.5, respectively. The latter two substrates exhibit substrate inhibition at high concentrations. p-Nitrophenyl phosphate demonstrates decreasing pH optima with decreasng substrate concentration. Heat inactivation studies indicate that both phosphorolytic and pyrophosphorolytic cleavage occur at the same site on the enzyme. Mg2+ (0.1-10.0 mM) and Mn2+ (0.01-0.1 mM) show a small stimulation of p-nitrophenyl phosphate-splitting activity at pH 10.5. Levamisole, Pi, CN-, Zn2+ and L-phenylalanine are all reversible inhibitors of the phosphomonoesterase activity. Pi is a competitive inhibitor with a Ki of 10.0 mM. Levamisole and Zn2+ are potent non-competitive inhibitors with inhibition constants of 0.05 and 0.04 mM, respectively. The chondrocytic alkaline phosphatase is inhibited irreversibly by Be2+, EDTA, EGTA, ethane-1-hydroxydiphosphonate, dichloromethane diphosphonate, L-cysteine, phenyl-methylsulfonyl fluoride, N-ethylmaleimide and iodoacetamide. NaCL, KCL and Na2SO4 at 0.5-1.0 M inhibit the enzyme. At pH 8.5, the cleavage of inorganic pyrophosphate (pyrophosphate phosphohydrolase, EC 3.6.1.1) by the chondrocytic enzyme is slightly enhanced by low levels of Mg2+ and depressed by concentrations higher than 1mM. Ca2+ show only inhibition. Similar effects of Mg2+ and Ca2+ on the associated ATPase (ATP phosphohydrolase, EC 3.1.6.3) activity were observed. Arrhenius studies using p-nitrophenyl phosphate and AMP as substrates have accounted for the ten-fold difference in V in terms of small differences in both the enthalpies and entropies of activation which are 700 cal/mol and 2.3 cal/degree per mol, respectively.  相似文献   

8.
An intracellular lipase present in the whiteleg shrimp Litopenaeus vannamei was detected in pleopods. The lipase from pleopods was purified and characterized by biochemical and kinetic parameters. Purified intracellular lipase has a molecular mass of 196kDa, the polypeptide is assembled by two monomers, 95.26 and 63.36kDa. The enzyme lacks glycosylation, and it has an isoelectric point of 5.0. The enzyme showed the highest activity at a temperature range of 30-40°C at pH 8.0-10.0. Activity was completely inhibited by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate, suggesting that the intracellular lipase is a serine lipase. The lipase hydrolyzes short and long-chain triacylglycerides, as well as naphthol derivatives at comparable rates in contrast to other sources of lipases. Specific activity of 930U mg(-1) and 416.56U mg(-1) was measured using triolein and tristearin at pH 8.0 at 30°C as substrates, respectively. The lipase showed a K(M,app) of 41.03mM and k(cat)/K(M,app) ratio of 4.88 using MUF-butyrate as the substrate. The intracellular lipase described for shrimp has a potential role in hydrolysis of triacylglycerides stored as fat body, as has been shown in humans.  相似文献   

9.
Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction.  相似文献   

10.
The crude lysosomal fraction of corn seedling root tips contains an arylsulphatase (E.C. 3.1.6.1) which hydrolysed p-nitrophenyl sulphate at pH 8.0 but had no activity towards p-nitrocatechol sulphate. The Km value for p-nitrophenyl sulphate was 1.24 mM. The hydrolysis of p-nitrophenyl sulphate was linear up to 2 h and the rate was proportional to the amount of enzyme added. The enzyme was strongly inhibited by cyanide, fluoride and phosphate ions and did not resemble the arylsulphatases of bacterial and animal origin.  相似文献   

11.
Conditions optimum for the assay of alkaline phosphatase of marine pseudomonad B-16 (ATCC 19855) and for maintaining the activity of the enzyme have been determined. The pH for optimal activity of the cell-bound enzyme was 9.0, whereas that for the enzyme after its release from the cells exceeded 9.4. Release was effected by first washing the cells in 0.5 M NaCl and then suspending them in 0.5 M sucrose. In the absence of salts, the activity of the cell-bound enzyme decreased rapidly at 25 C and less rapidly at 4 C. This loss of activity could be arrested but not restored by adding Mg(2+). In the presence of Na(+), activity of the cell-bound enzyme dropped to about 50% of that prevailing initially, but in this case adding Mg(2+) restored enzyme activity completely. The activity of the enzyme after its release from the cells into 0.5 M sucrose was approximately 50% of that of the equivalent amount of enzyme in the original cells. This activity was relatively stable at both 25 and 4 C. Adding Mg(2+) to the released enzyme restored its activity to that of the cell-bound form. The synthesis of alkaline phosphatase by the cells was not affected by adding 50 mM inorganic phosphate to the growth medium. The K(m) of the released enzyme for p-nitrophenyl phosphate was found to be 6.1 x 10(-5) M.  相似文献   

12.
p34, a specific p-nitrophenyl phosphatase (pNPPase) was identified and purified from the murine cell line EL4 in a screen for the intracellular molecular targets of the antiinflammatory natural product parthenolide. A BLAST search analysis revealed that it has a high degree of sequence similarity to two yeast alkaline phosphatases. We have cloned, sequenced, and expressed p34 as a GST-tagged fusion protein in Escherichia coli and an EE-epitope-tagged fusion protein in mammalian cells. Using p-nitrophenyl phosphate (pNPP) as a substrate, p34 is optimally active at pH 7.6 with a K(m) of 1.36 mM and K(cat) of 0.052 min(-1). Addition of 1 mM Mg(2+) to the reaction mixture increases its activity by 14-fold. Other divalent metal ions such as Co(2+) and Mn(2+) also stimulated the activity of the enzyme, while Zn(2+), Fe(2+), and Cu(2+) had no effect. Furthermore, both NaCl and KCl enhanced the activity of the enzyme, having maximal effect at 50 and 75 mM, respectively. The enzyme is inhibited by sodium orthovanadate but not by sodium fluoride or okadaic acid. Mutational analysis data suggest that p34 belongs to the group of phosphatases characterized by the sequence motif DXDX(T/V).  相似文献   

13.
An alkaline phosphatase was purified from boar seminal plasma using adsorption to calcium phosphate gel, gel filtration, and ion-exchange chromatography. The preparation gave a single band on SDS polyacrylamide electrophoresis. The enzyme was a non-specific alkaline phosphatase that hydrolysed pyrophosphate slowly and had no phosphodiesterase activity. The pH optimum was 10 and the Km was approximately 0.2 mM with p-nitrophenyl phosphate as substrate. The enzyme was a zinc metalloenzyme as indicated by the loss of activity when treated with o-phenanthroline and the restoration of activity by zinc and magnesium ions. It also lost activity when treated with thiols. Molecular weight estimates from SDS polyacrylamide gel electrophoresis and gel filtration suggest that the enzyme is a tetramer of identical subunits, each of which has a molecular weight of 68,000.  相似文献   

14.
Summary A simultaneous azo-coupling method for the histochemical localization of d-equilenin sulfatase is described. d-Equilenin is a natural estrogenic steroid hormone, and its sulfuric acid ester was synthesized. It was found that the d-equilenin liberated during hydrolysis of d-equilenin sulfate by tissue sulfatase could be coupled with a diazonium salt to produce a purple precipitate indicating enzyme activity. d-Equilenin sulfatase was found in human tissues, but not in tissues of the rat. The optimum substrate concentration was 0.8 mM, activity was demonstrable over the wide pH range 5.0–8.0. Enzyme activity localized diffusely in the cytoplasm in optimally fixed specimens. Enzyme activity was also fairly well demonstrable in unfixed cryostat sections. Enzyme activity was completely inhibited by 0.1 M phosphate, 1 mM sodium tetraborate, 1 mM p-nitrophenyl sulfate and by 2 mM p-nitrocatechol sulfate. Estrone sulfate at concentration 0.8 mM had no effect, but at 4 mM caused marked inhibition of the reaction. At the same concentrations dehydroepiandrosterone sulfate did not inhibit the reaction. The chemical properties and tissue localizations of d-equilenin sulfatase differed from the properties of arylsulfatases A, B and C and other steroid sulfatases reported previously in the literature.  相似文献   

15.
Glutaraldehyde prefixation causes a considerable inactivation of the acid phosphatase of yeast protoplasts in dependence on the duration of aldehyde influence. Lead ions necessary for ultracytochemical demonstration effect a still stronger inhibition of enzymatic activity. Prefixation, however, protects the enzyme from further inhibition by lead. At pH 4.4 in intact cells acid phosphatase activities are mainly localized in the periplasmic space and in vesicles fused with the plasma membrane. The cell wall and cytoplasm usually remain free of reaction products. On the cell surface activities are found in form of globular lead deposits. At pH 5.2 and 6.3 the periplasmic activity appears decreased compared to that at lower pH values and the intracellular activity is increased. The plasma membrane of protoplasts is completely free of precipitates. The intracellular activity sites of protoplasts (cisternae of endoplasmic reticulum and/or Golgi-like system, small vesicles, central vacuole, nuclear envelope) are the same as for intact cells. The occurrence of at least two forms of acid phosphatase in S. cerevisiae id deduced.  相似文献   

16.
Myo-inositol-1-phosphatase (EC 3.1.3.25) is able to hydrolyze myo-inositol-1-phosphate in the presence of Mg(2+) ions at neutral pH, and also p-nitrophenyl phosphate in the presence of Zn(2+)-ions at acidic pH. This enzyme plays a role in phosphatidylinositol cell signalling and is a putative target of lithium therapy in manic depression. We elucidate here the kinetic mechanism of the Zn-dependent activity of myo-inositol-1-phosphatase. As part of this analysis it was necessary to determine the basicity constants of p-nitrophenyl phosphate and the stability constant of its metal-complex in the presence of zinc chloride. We find that the Zn-dependent reaction may be described either by a rapid-equilibrium random mechanism or an ordered steady-state mechanism in which the substrate binds to the free enzyme prior to the metal ion. In both models the Zn-substrate complex acts as a high affinity inhibitor, yielding a dead-end species through its binding to the enzyme-Zn-substrate in rapid-equilibrium or to the enzyme-phosphate complexes in a steady-state model. Phosphate is a competitive inhibitor of the enzyme with respect to the substrate and an uncompetitive inhibitor with respect to zinc ions.  相似文献   

17.
1. Acid phosphatase from the yeast Rhodotorula rubra was purified 44-fold. The purification procedure involved mechanical disruption of cells, precipitation with ethanol, chromatography on DEAE- and CM-cellulose. 2. The purified enzyme is homogeneous in polyacrylamide gels at pH 4.5, 9.5 and 8.4. Carbohydrate content accounts for 57% of the total weight. The optimum pH is at 4.0-4.6, and the enzyme is stable over pH range from 2.6 to 6.0. Full activity was retained on 60-min incubation at 50 degrees C, but it was reduced by half on 60-min incubation at 65 degrees C. 3. Specificity of the enzyme is fairly broad; monoesters of carbohydrates, and nucleosides and inorganic pyrophosphate can serve as substrates. Km was found to be 1 X 10(-4) M for p-nitrophenyl phosphate as a substrate. The enzyme is inhibited by molybdate, phosphate, arsenate and fluoride ions.  相似文献   

18.
When screening an Escherichia coli gene library for myo-inositol hexakisphosphate (InsP6) phosphatases (phytases), we discovered that the agp-encoded acid glucose-1-phosphatase also possesses this activity. Purified Agp hydrolyzes glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6 with pH optima, 6.5, 3.5, and 4.5, respectively, and was stable when incubated at pH values ranging from 3 to 10. Glucose-1-phosphate was hydrolyzed most efficiently at 55 degrees C. while InsP6 and p-nitrophenyl phosphate were hydrolyzed maximally at 60 degrees C. The Agp exhibited Km values of (0.39 mM, 13 mM, and 0.54 mM for the hydrolysis of glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6, respectively. High-pressure liquid chromatography (HPLC) analysis of inositol phosphate hydrolysis products of Agp demonstrated that the enzyme catalyzes the hydrolysis of phosphate from each of InsP6, D-Ins(1,2,3,4,5)P5, Ins(1,3,4,5,6)P5, and Ins(1,2,3,4,6)P5, producing D/L-Ins(1,2,4,5,6)P5. D-Ins(1,2,4,5)P4, D/L-Ins(1,4,5,6)P4 and D/L-Ins(1,2,4,6)P4, respectively. These data support the contention that Agp is a 3-phosphatase.  相似文献   

19.
A 17-kilodalton (kDa) human placental acid phosphatase was purified 21,400-fold to homogeneity. The enzyme has an isoelectric point of pH 7.2 and a specific activity of 106 mumol min-1 mg-1 using p-nitrophenyl phosphate as a substrate at pH 5 and 37 degrees C. This placental acid phosphatase showed activity toward phosphotyrosine and toward phosphotyrosyl proteins. The pH optima of the enzyme with phosphotyrosine and with phosphotyrosyl band 3 (from human red cells) were between pH 5 and 6 and pH 5 and 7, respectively. The Km for phosphotyrosine was 1.6 mM at pH 5 and 37 degrees C. Phosphotyrosine phosphatase activity was not inhibited by tartrate or fluoride, but vanadate, molybdate, and zinc ions acted as strong inhibitors. Enzyme activity was also inhibited by DNA, but RNA was not inhibitory. It is a hydrophobic nonglycoprotein containing approximately 20% hydrophobic amino acids. The average hydrophobicity was calculated to be 903 cal/mol. The absorption coefficient at 280 nm, E1% 1cm, was determined to be 5.7. The optical ellipticity of the enzyme at 222 nm was -5200 deg cm2 dmol-1, which would correspond to a low helical content. Free sulfhydryl and histidine residues were necessary for the enzyme activity. The enzyme contained four reactive sulfhydryl groups. Chemical modification of the sulfhydryls with iodoacetate resulted in unfolding of the protein molecule as detected by fluorescence emission spectroscopy. Antisera against both the native and the denatured protein were able to immunoprecipitate the native enzyme. However, upon denaturation, the acid phosphatase lost about 70% of the antigenic determinants. Both antisera cross-reacted with a single 17-kDa polypeptide on immunoblotting.  相似文献   

20.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号