首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A β-carbonic anhydrase (CA, EC 4.2.1.1) from the bacterial pathogen Brucella suis, bsCA 1, has been cloned, purified characterized kinetically and for inhibition with a series of water soluble glycosylated sulfanilamides. bsCA 1 has appreciable activity as catalyst for the hydration of CO2 to bicarbonate, with a kcat of 6.4 × 105 s?1 and kcat/Km of 3.9 × 107 M?1 s?1. All types of inhibitory activities have been detected, with KIs in the range of 8.9–110 nM. The best bsCA 1 inhibitor were the galactose and ribose sulfanilamides, with inhibition constants of 8.9–9.2 nM. Small structural changes in the sugar moiety led to dramatic differences of enzyme inhibitory activity for this series of compounds. One of the tested glycosylsulfonamides and acetazolamide significantly inhibited the growth of the bacteria in cell cultures.  相似文献   

2.
Abstract

A small series of C-glycosides containing the phenol moiety was tested for the inhibition of the β-class carbonic anhydrases (βCAs, EC 4.2.1.1) from Brucella suis. Many compounds showed activities in the micromolar or submicromolar range and excellent selectivity for pathogen CAs over human isozymes. Glycosides incorporating the 3-hydroxyphenyl moiety showed the best inhibition profile, and therefore this functionality represents lead for the development of novel anti-infectives with a new mechanism of action.  相似文献   

3.
A series of sulfonamides was prepared by reaction of sulfanilamide with aryl/alkyl isocyanates. The ureido-substituted benzenesulfonamides showed a very interesting profile for the inhibition of several carbonic anhydrases (CAs, EC 4.2.1.1) such as the human hCA II and three β-CAs from pathogenic fungal or bacterial species. The Candida albicans enzyme was inhibited with potencies in the range of 3.4-3970 nM, whereas the Mycobacterium tuberculosis enzymes Rv1284 and Rv3273 were inhibited with Kis in the range of 4.8-6500 nM and of 6.4-6850 nM, respectively. The structure-activity relationship for this class of inhibitors is rather complex, but the main features associated with effective inhibition of both α- and β-CAs investigated here have been delineated. The nature of the moiety substituting the second ureido nitrogen is the determining factor in controlling the inhibitory power, probably due to the flexibility of the ureido linker and the possibility of this moiety to orientate in different subpockets of the active site cavities of these enzymes.  相似文献   

4.
The two β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Salmonella enterica serovar Typhimurium, stCA 1 and stCA 2, were investigated for their inhibition with a large panel of sulfonamides and sulfamates. Unlike inorganic anions, which are weak, millimolar inhibitors of the two enzymes [Vullo et al., Bioorg. Med. Chem. Lett.2011, 21, 3591], sulfonamides and sulfamates are effective micro-to nanomolar inhibitors of the two enzymes. Various types of inhibitors have been detected among the 38 investigated sulfonamides/sulfamates, with K(I)s in the range of 31 nM-5.87 μM. The best stCA 1 inhibitors were acetazolamide and benzolamide-based compounds, whereas the best stCA 2 inhibitors were sulfonylated benzenesulfonamides and amino-benzolamide derivatives (K(I)s in the range of 31-90 nM). 3-Fluoro-5-chloro-4-aminobenzolamide showed an inhibition constant of 51 nM against stCA 1 and of 38 nM against stCA 2, being the best inhibitor detected so far for these enzymes. As many strains of S. enterica show extensive resistance to classical antibiotics, inhibition of the β-CAs investigated here may be useful for developing novel antibacterials, targeting β-CAs which may be involved in pathogenicity and invasion of some bacteria.  相似文献   

5.
Two new β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Salmonella enterica serovar Typhimurium, stCA 1 and stCA 2, were characterized kinetically. The two enzymes possess appreciable activity as catalysts for the hydration of CO2 to bicarbonate, with kcat of 0.79 × 106 s−1 and 1.0 × 106 s−1, and kcat/Km of 5.2 × 107 M−1 s−1 and of 8.3 × 107 M−1 s−1, respectively. A large number of simple/complex inorganic anions as well as other small molecules (sulfamide, sulfamic acid, phenylboronic acid, phenylarsonic acid, dialkyldithiocarbamates) showed interesting inhibitory properties towards the two new enzymes, with several low micromolar inhibitors discovered. As many strains of S. enterica show extensive resistance to classical antibiotics, inhibition of the β-CAs investigated here may be useful for developing lead compounds for novel types of antibacterials.  相似文献   

6.
The β-carbonic anhydrases (β-CAs) are a diverse but structurally related group of zinc-metalloenzymes found in eubacteria, plant chloroplasts, red and green algae, and in the Archaea. The enzyme catalyzes the rapid interconversion of CO2 and H2O to HCO3 and H+, and is believed to be associated with metabolic enzymes that consume or produce CO2 or HCO3. For many organisms, β-CA is essential for growth at atmospheric concentrations of CO2. Of the five evolutionarily distinct classes of carbonic anhydrase, β-CA is the only one known to exhibit allosterism. Here we review the structure and catalytic mechanism of β-CA, including the structural basis for allosteric regulation.  相似文献   

7.
Two β-carbonic anhydrases (CAs, EC 4.2.1.1) were identified, cloned and purified in the pathogenic bacterium Legionella pneumophila, denominated LpCA1 and LpCA2. They efficiently catalyze CO2 hydration to bicarbonate and protons, with kcat in the range of (3.4–8.3) × 105 s−1 and kcat/Km of (4.7–8.5) × 107 M−1 s−1, and are inhibited by sulfonamides and sulfamates. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide(KIs in the range of 40.3–90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide and dichlorophenamide (KIs in the range of 25.2–88.5 nM). As these enzymes may be involved in pH regulation in the phagosome during Legionella infection, their inhibition may lead to antibacterials with a novel mechanism of action.  相似文献   

8.
A small series of C-cinnamoyl glycoside containing the phenol moiety was tested for the inhibition of the three Mycobacterium tuberculosis β-carbonic anhydrases (CAs, EC 4.2.1.1) with activities in the low micromolar range detected. The compounds were also tested for the inhibition of growth of M. tuberculosis H37Rv strain, leading to the identification of (E)-1-(2′,3′,4′,6′-tetra-O-acetyl-β-d-glucopyranosyl)-4-(3-hydroxyphenyl)but-3-en-2-one (1) as the first carbonic anhydrase inhibitor with anti-tubercular activity.  相似文献   

9.
Six tripeptides incorporating acidic amino acid residues were prepared for investigation as activators of β- and γ-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacteria Vibrio cholerae, Mycobacterium tuberculosis, and Burkholderia pseudomallei. The primary amino acid residues that are involved in the catalytic mechanisms of these CA classes are poorly understood, although glutamic acid residues near the active site appear to be involved. The tripeptides that contain Glu or Asp residues can effectively activate VchCAβ and VchCAγ (enzymes from V. cholerae), Rv3273 CA (mtCA3, a β-CA from M. tuberculosis) and BpsCAγ (γ-CA from B. pseudomallei) at 0.21–18.1?µM levels. The position of the acidic residues in the peptide sequences can significantly affect bioactivity. For three of the enzymes, tripeptides were identified that are more effective activators than both l-Glu and l-Asp. The tripeptides are also relatively selective because they do not activate prototypical α-CAs (human carbonic anhydrases I and II). Because the role of CA activators in the pathogenicity and life cycles of these infectious bacteria are poorly understood, this study provides new molecular probes to explore such processes.  相似文献   

10.
We investigated the cloning, catalytic activity and anion inhibition of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Legionella pneumophila. Two such enzymes, lpCA1 and lpCA2, were found in the genome of this pathogen. These enzymes were determined to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated to identify inhibitors of these enzymes. Perchlorate and tetrafluoroborate were not acting as inhibitors (KI >200 mM), whereas sulfate was a very weak inhibitor for both lpCA1 and lpCA2 (KI values of 77.9–96.5 mM). The most potent lpCA1 inhibitors were cyanide, azide, hydrogen sulfide, diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging from 6 to 94 μM. The most potent lpCA2 inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KI values ranging from 2 to 13 μM. As these enzymes seem to be involved in regulation of phagosome pH during Legionella infection, inhibition of these targets may lead to antibacterial agents with a novel mechanism of action.  相似文献   

11.
Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of aromatic, arylalkenyl- and arylalkylboronic acids was investigated. Aromatic, 4-phenylsubstituted- and 2-naphthylboronic acids were the best Can2 inhibitors, with inhibition constants in the range of 8.5–11.5 μM, whereas arylalkenyl and aryalkylboronic acids showed KIs in the range of 428–3040 μM. Nce103 showed a similar inhibition profile, with the 4-phenylsubstituted- and 2-naphthylboronic acids possessing KIs in the range of 7.8–42.3 μM, whereas the arylalkenyl and aryalkylboronic acids were weaker inhibitors (KIs of 412–5210 μM). The host human enzymes CA I and II were also effectively inhibited by these boronic acids. The B(OH)2 moiety is thus a new zinc-binding group for designing effective inhibitors of the α- and β-CAs.  相似文献   

12.
A series of diazenylbenzenesulfonamides obtained from sulfanilamide or metanilamide by diazotization followed by coupling with phenols or amines, was tested for the inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) encoded by the genes Rv1284 and Rv3273 of Mycobacterium tuberculosis. Several low micromolar inhibitors of the two enzymes were detected, with prontosil being the best inhibitor (KIs of 126–148 nM). Inhibition of pathogenic β-CAs may lead to the development of antiinfectives with a new mechanism of action, devoid of resistance problems encountered with classical antibiotics.  相似文献   

13.
A β-carbonic anhydrases (CAs, EC 4.2.1.1) was recently cloned, purified and characterized kinetically in the pathogen Clostridium perfringens. We report here the first inhibition study of this enzyme (CpeCA). CpeCA was poorly inhibited by iodide and bromide, and was inhibited with KIs in the range of 1–10 mM by a range of anions such as (thio)cyanate, azide, bicarbonate, nitrate, nitrite, hydrogensulfite, hydrogensulfide, stannate, tellurate, pyrophosphate, divanadate, tetraborate, peroxydisulfate, sulfate, iminodisulfonate and fluorosulfonate. Better inhibitory power, with KIs of 0.36–1.0 mM, was observed for cyanide, carbonate, selenate, selenocyanide, trithiocarbonate and diethyldithiocarbamate, whereas the best CpeCA inhibitors were sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, which had KIs in the range of 7–75 μM. This study thus provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

14.
The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (KIs in the range of 0.11–0.97 µM); followed by mtCA 2 (KIs in the range of 0.59–8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25–7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.  相似文献   

15.
Enterobacteriaceae, one of the major families of microorganisms that inhabit the soil and gut, internally regulate constant fluctuations in soil and gut pH by buffering these changes through the presence of carbonic anhydrase (CA). In our study, we prove the prevalence of β-CA, derived from the can gene, in members of Enterobacteriaceae by using a combination of experimental and bioinformatics approaches. Enzyme purification and western blot analysis revealed the presence of β-CA in Enterobacter sp. RS1. Genetic studies confirmed the presence of β-CA in both Enterobacter sp. RS1 and Citrobacter freundii SW3. Our analysis of the divergence of cynT and can genes among harboring members indicated that the can gene was more prominent in Enterobacteriaceae than cynT. Sequence analysis of the can gene revealed a >25 % similarity among all sequences and a >50 % similarity among sequences from the Enterobacteriaceae family. The β-CA from C. freundii SW3 and Enterobacter sp. RS1, isolated from soil and used in this study, possessed a high similarity with the can gene. The close association among Enterobacteriaceae genera usually found in the soil and gut and the sequence similarity of β-CA in the different genera of Enterobacteriaceae suggest the importance of the can gene in oscillating environmental conditions.  相似文献   

16.
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21–12.0?µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar – low micromolar range (0.18–1.37?µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180?nm for VchCAβ, and more than 20?µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue.  相似文献   

17.
A series of monothiocarbamates (MTCs) was investigated for the inhibition of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa, MgCA. These MTCs incorporate various scaffolds, among which aliphatic amine with 1–4 carbons atom in their molecule, morpholine, piperazine, as well as phenethylamine and benzylamine derivatives. All the reported MTCs displayed a better efficacy in inhibiting MgCA compared to the clinically used sulphonamide drug acetazolamide (KI of 74?μM), with KIs spanning between 1.85 and 18.9?μM. The homology model of the enzyme previously reported by us was used to rationalize the results by docking some of these MTCs within the fungal CA active site. This study might be useful to enrich the knowledge of the MgCA inhibition profile, eliciting novel ideas pertaining the design of modulators with potential efficacy in combatting dandruff or other fungal infections.  相似文献   

18.
The inhibition of α-, β-, γ-, and δ-class carbonic anhydrases (CAs, EC 4.2.1.1) from bacteria (Vibrio cholerae and Porphyromonas gingivalis) and diatoms (Thalassiosira weissflogii) with a panel of N’-aryl-N-hydroxy-ureas is reported. The α-/β-CAs from V. cholerae (VchCAα and VchCAβ) were effectively inhibited by some of these derivatives, with KIs in the range of 97.5?nM – 7.26?µM and 52.5?nM – 1.81?µM, respectively, whereas the γ-class enzyme VchCAγ was less sensitive to inhibition (KIs of 4.75 – 8.87?µM). The β-CA from the pathogenic bacterium Porphyromonas gingivalis (PgiCAβ) was not inhibited by these compounds (KIs?>?10?µM) whereas the corresponding γ-class enzyme (PgiCAγ) was effectively inhibited (KIs of 59.8?nM – 6.42?µM). The δ-CA from the diatom Thalassiosira weissflogii (TweCAδ) showed effective inhibition with these derivatives (KIs of 33.3?nM – 8.74?µM). As most of these N-hydroxyureas are also ineffective as inhibitors of the human (h) widespread isoforms hCA I and II (KIs?>?10?µM), this class of derivatives may lead to the development of CA inhibitors selective for bacterial/diatom enzymes over their human counterparts and thus to anti-infectives or agents with environmental applications.  相似文献   

19.
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the fungal pathogen Candida albicans (Nce103) is involved in a CO2 sensing pathway critical for the pathogen life cycle and amenable to drug design studies. Herein we report an inhibition study of Nce103 with a library of sulfonamides and one sulfamate, showing that Nce103, similarly to the related enzyme from Cryptococcus neoformans Can2, is inhibited by these compounds with KIs in the range of 132 nM–7.6 μM. The best Nce103 inhibitors were acetazolamide, methazolamide, bromosulfanilamide, and 4-hydroxymethylbenzenesulfonamide (KIs < 500 nM). A homology model was generated for Nce103 based on the crystal structure of Can2. The model shows that compounds with zinc-binding groups incorporating less polar moieties and compact scaffolds generate stronger Nce103 inhibitors, whereas highly polar zinc-binding groups and bulkier compounds appear more promising for the specific inhibition of Can2. Such compounds may be useful for the design of antifungal agents possessing a new mechanism of action.  相似文献   

20.
Carbonic anhydrases (CAs, EC 4.2.1.1) were purified from sheep kidney (sCA IV), from the liver of the teleost fish Dicentrarchus labrax (dCA) and from human erythrocytes (hCA I and hCA II). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The kinetic parameters of these enzymes were determined for their esterase activity with 4-nitrophenyl acetate as substrate. The following metal ions, Pb2+, Co2+, Hg2+, Cd2+, Zn2+, Se2+, Cu2+, Al3+ and Mn3+ showed inhibitory effects on these enzymes. The tested metal ions inhibited these CAs competitively in the low milimolar/submillimolar range. The susceptibility to various cations inhibitors differs significantly between these vertebrate α-CAs and is probably due to their binding to His64 or the histidine cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号