首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, three series of novel celastrol derivatives were designed and synthesised by modifying the carboxylic acid at the 20th position with amino acid, amine, and triazole derivatives. All the synthesised compounds were screened for their anticancer activities using MTT assay against AGS, MGC-803, SGC-7901, HCT-116, A549, HeLa, BEL-7402, and HepG-2 cell lines. Most of the synthesised compounds exhibited potent antiproliferative effects. The most promising compound 3-Hydroxy-9β,13α-dimethyl-2-oxo-24,25,26-trinoroleana-1(10),3,5,7-tetraen-29-oic amide, N-(R)-methyl-3-(1H-indol-2-yl)propanoate (11) showed considerable high anticancer activity against AGS cell lines, with an IC50 value of 0.44?μM, and considerably higher activities against HCT-116, BEL-7402, and HepG-2 cell lines, with IC50 values of 0.78, 0.63, and 0.76?μM, respectively. The results of apoptosis tests and molecular docking study of compound 11 binding to Caspase-3 revealed that its mechanism of action with antiproliferative was possibly involved in inducing apoptosis by inducing the activation of caspase-3.  相似文献   

2.
Pregnenolone (1) was used as a template to develop new anticancer compounds. Ring-D modification of 1 resulted in the synthesis of benzylidenes 2-17, pyrazolines 18-76, pyrazoles 85-91, hydrazones 77-84, and oximes 92-107 derivatives. The structure of compound 107 was also deduced through single crystal X-ray diffraction studies. The inclusion of furanyl and pyridyl rings to pregnenolone skeleton increases the cytotoxicity of all compounds significantly. Among benzylidene derivatives, only heterocyclic enone 8 (IC50 = 0.74 μM/mL against HepG2), and 17 (IC50 = 4.49 μM/mL against HepG2, IC50 = 5.01 μM/mL against MDA-MB-230 cancer cell line) exhibited a significant activity. The cytotoxicity data of pyrazoline derivatives 18-76 revealed that only furanyl bearing pyrazolines 40, 42-44, 48, and 49 exhibited significant activities. While all (O-carboxymethyl) oximes, hydazones, and pyrazoles derivatives of pregnenolone did not show any significant activity against both the cell lines. Thus the furanyl bearing enone 8 (IC50 = 0.74 μM/mL against HepG2), and its pyrazoline derivative 48 (IC50 = 0.91 μM/mL against MDA-MB-230 cancer cell lines) were identified as the most active compounds in all derivatives of pregnenolone.  相似文献   

3.
Abstract

Benzothiazole (BTA) belongs to the heterocyclic class of bicyclic compounds. BTA derivatives possesses broad spectrum biological activities such as anticancer, antioxidant, anti-inflammatory, anti-tumour, antiviral, antibacterial, anti-proliferative, anti-diabetic, anti-convulsant, analgesic, anti-tubercular, antimalarial, anti-leishmanial, anti-histaminic and anti-fungal among others. The BTA scaffolds showed a crucial role in the inhibition of the metalloenzyme carbonic anhydrase (CA). In this review an extensive literature survey over the last decade discloses the role of BTA derivatives mainly as anticancer agents. Such compounds are effective against various types of cancer cell lines through a multitude of mechanisms, some of which are poorly studied or understood. The inhibition of tumour associated CAs by BTA derivatives is on the other hand better investigated and such compounds may serve as anticancer leads for the development of agents effective against hypoxic tumours.  相似文献   

4.
Abstract

A series of naphthalene-chalcone derivatives (3a–3t) were prepared and evaluated as tubulin polymerisation inhibitor for the treatment of breast cancer. All compounds were evaluated for their antiproliferative activity against MCF-7 cell line. The most of compounds displayed potent antiproliferative activity. Among them, compound 3a displayed the most potent antiproliferative activity with an IC50 value of 1.42?±?0.15?µM, as compared to cisplatin (IC50?=?15.24?±?1.27?µM). Additionally, the promising compound 3a demonstrated relatively lower cytotoxicity on normal cell line (HEK293) compared to tumour cell line. Furthermore, compound 3a was found to induce significant cell cycle arrest at the G2/M phase and cell apoptosis. Compound 3a displayed potent tubulin polymerisation inhibitory activity with an IC50 value of 8.4?µM, which was slightly more active than the reference compound colchicine (IC50?=?10.6?µM). Molecular docking analysis suggested that 3a interact and bind at the colchicine binding site of the tubulin.  相似文献   

5.
6.
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50?=?1.05?µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50?=?6.84?µM) and 5-fluorouracil (5-FU) (IC50?=?24.80?µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.  相似文献   

7.
We report the synthesis and evaluation as potential anticancer agents of a series of tetracyclic indenoquinolines. The compounds, which are obtained through the photoisomerization of Diels–Alder adducts formed between purpurogallin derivatives and nitrosobenzene, have in vitro antiproliferative activities in the μM to nM range against breast (MCF-7), lung epithelial (A-549), and cervical (HeLa) adenocarcinoma cells. The cytotoxicities of several of the novel tetracycles are comparable to or better than that of camptothecin. A strong correlation between the activity of the compounds and their aromaticity and planarity was observed, suggesting a mode of action similar to that of topoisomerase poisons.  相似文献   

8.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

9.
Thirty novel derivatives of 2,3-diaryl acrylonitrile were synthesized and evaluated for biological activity. Preliminary investigations of antitumor activity in vitro showed that most of the synthesized compounds have significant antiproliferative effects on human cancer cell lines, such as BEL-7402, HeLa, and HCT116 with IC50 values in the range of 0.13–60.23 μM without significant toxic effects on the non-cancerous human liver cell line L-02. In particular, compounds 4d and 4p were found to be the most potent against HeLa (4.20 μM) and HCT116 cells (0.13 μM), respectively, with superior or similar in vitro efficacy to that of the broad-spectrum anticancer drug taxol.  相似文献   

10.
Resveratrol is a natural polyphenol with plethora of biological activities. Resveratrol has previously shown to decrease DNA-methyltransferase (DNMT) enzymes expression and to reactivate silenced tumor suppressor genes. Currently, it seems that no resveratrol analogs have been developed as DNMT inhibitors. Recently, we reported the synthesis of resveratrol-salicylate derivatives and by examining the chemical structure of these analogs, we proposed that these compounds could exhibit DNMT inhibition especially that they resembled NSC 14778, a compound we previously identified as a DNMT inhibitor by virtual screening. Indeed, using in vitro DNMT inhibition assay, some of the resveratrol-salicylate analogs we screened in this work that showed selective inhibition against DNMT3 enzymes which were greater than resveratrol. A molecular docking study revealed key binding interactions with DNMT3A and DNMT3B enzymes. In addition, the most active analog, 10 showed considerable cytotoxicity against three human cancer cells; HT-29, HepG2 and SK-BR-3, which was greater than resveratrol. Further studies are needed to understand the anticancer mechanisms of these derivatives.  相似文献   

11.
Abstract

4-Chloro-3-({[(substitutedamino)carbonothioyl]amino}sulfonyl)-N-(2-methyl-2,3-dihydro-1H-indole-1-yl)benzamide (120) and 4-chloro-3-({[3-(substituted)-4-oxo-1,3-thiazolidine-2-ylidene]amino}sulfonyl)-N-(2-methyl-2,3-dihydro-1H-indole-1-yl)benzamide derivatives (2131) were synthesized from 4-chloro-N-(2-methyl-2,3-dihydroindol-1-yl)-3-sulfamoylbenzamide (indapamide). 4-Chloro-3-({[(4-chlorophenyl) amino) carbonothioyl]amino}sulfonyl)-N-(2-methyl-2,3-dihydro-1H-indole-1-yl)benzamide 12 demonstrated the highest proapoptotic activity among all synthesized compounds on melanoma cell lines MDA–MB-435 with 3.7% growth inhibition at the concentration of 10?µM. Compound 12 (SGK 266) was evaluated in vitro using the MTT colorimetric method against melanoma cancer cell line MDA–MB435 growth inhibition for different doses and exhibited anticancer activity with IC50 values of 85–95?µM against melanoma cancer cell line MDA–MB435. In addition, this compound was investigated as inhibitors of four physiologically relevant human carbonic anhydrase isoforms, hCA I, II, IX and XII. The compund inhibited these enzymes with IC50 values ranging between 0.72 and 1.60?µM.  相似文献   

12.
We report the efficient synthesis and biological evaluation of new benzodioxinoindolocarbazoles heterocycles (BDCZs) designed as potential anticancer agents. Indolic substitution and maleimide variations were performed to design a new library of BDCZs and their cytotoxicity were evaluated on two representative cancer cell lines. Several derivatives have shown a marked cytotoxicity with IC50 values in the nanomolar range. Results are reported in this Letter.  相似文献   

13.
Based on our previous docking model, in order to carry out more rational drug design, totally 82 vinyl sulfonyl fluorides, including some 2-(hetero)arylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides derivatives as potential human telomerase inhibitors were designed and synthesised. The in vitro anticancer activity assay showed that compound 57 (1E,3E)-4-(4-((E)-2-(fluorosulfonyl)vinyl)phenyl)buta-1,3-diene-1-sulfonyl fluoride exhibited high activity against A375 and MDA-MB-231 cell lines with IC50 1.58 and 3.22?µM, but it manifested obvious un-toxic effect against GES-1 and L-02 with IC50 with IC50 values less than 2.00?mM. By the modified TRAP assay, some compounds including 57 exhibited potent inhibitory activities against telomerase with IC50 values of 0.71–0.97?µM.  相似文献   

14.
A number of costunolide derivatives (4a-p) have been synthesized and evaluated for their in vitro cytotoxicity against eight tumor and a non-tumor cell lines. Compound 4d showed around 2-fold better cytotoxicity against SW-620 (colon) cell line with improved safety index than costunolide (1). While compounds 4e, 4g, and 4p have shown around 2- to 3-fold better cytotoxicity against MIAPaCa2 (pancreas), K-562 (leukemia) and PA-1 (ovary) cell lines as well as better safety index in comparison to costunolide (1). Compound 4p also exhibited cytotoxicity against HBL100 (breast) cell line with 2-fold better safety index. Structure-activity relationship has been described.  相似文献   

15.
Eleven novel acridone derivatives were synthesized and evaluated for their anticancer activity against 60 human cancer cell lines. Five compounds 8b, 8d, 8g, 8h, and 8k displayed very good in vitro antiproliferative activities well over 95% of the panels. The most active compound is 8k (5, 7-dibromo-3-phenyl-3,4-dihydroacridin-1 (2H)-one). In addition, 8k was the most sensitive agent in all 9 panels starting with prostate (0.075 µm), leukemia (0.116 µm), non-small cell lung cancer (0.164 µm), colon cancer (0.193 µm), CNS cancer (0.264 µm), melanoma (0.317 µm), renal cancer (0.403 µm), ovarian cancer (0.410 µm), and breast cancer (0.608 µm). Virtual screening studies also revealed that nine of the eleven compounds formed good binding interaction with the active site ATPase domain of human topoisomerase IIα (PDB: 1zxm). All nine derivatives exhibited binding affinities that ranged in values from −8.5 to −7.9 kcal/mol, indicating that they could be catalytic inhibitors of the nuclear enzyme, topoisomerase.  相似文献   

16.
A series of novel thiazolyl-pyrazoline derivatives containing benzodioxole (C1–C20) have been designed and synthesized. Among of the synthesized compounds, 2-(5-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-bromophenyl)thiazole (C6) displayed the most potent inhibitory activity for HER-2 (IC50 = 0.18 μM for HER-2). Antiproliferative assay results indicated that compound C6 owned high antiproliferative activity against MCF-7 and B16-F10 in vitro, with IC50 value of 0.09 and 0.12 μM, respectively, being comparable with the positive control Erlotinib. Docking simulation was further performed to determine the probable binding model. Based on the preliminary results, compound C6 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

17.
Novel tolmetin derivatives 5a–f to 8a–c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.  相似文献   

18.
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket.  相似文献   

19.
A series of 10 novel nitro-analogues of cryptolepine (1) has been synthesised and these compounds were evaluated for their in-vitro cytotoxic properties as well as their potential for reductive activation by the cytosolic reductase enzymes NQO1 and NQO2. Molecular modelling studies suggest that cryptolepine is able to fit into the active site of NQO2 and thus raising the possibility that nitro-analogues of 1 could act as bioreductive prodrugs and be selectively reduced by NQO1 and NQO2 to more toxic species in cancer cells in which these enzymes are over-expressed. Analogues were screened against the RT112 cell line (high in NQO2), in the presence and absence of the essential cofactor dihydronicotinamide riboside (NRH), whereby all analogues were shown to be cytotoxic (IC50<2microM) in the absence of NRH. With the addition of NRH, one analogue, 2-fluoro-7,9-dinitrocryptolepine (7), exhibited a 2.4-fold increase in cytotoxic activity. Several nitro-derivatives were also evaluated as substrates for purified human NQO1 and analogues that were found to be substrates were subsequently tested against the H460 (high NQO1) and BE (low NQO1) cell lines to detect in-vitro activation by NQO1. The analogue 8-chloro-9-nitrocryptolepine (9) was found to be the best substrate for NQO1 but it was not more toxic to H460 than to BE cells. Fluorescence laser confocal microscopy of 1 and several analogues showed that in contrast to 1 the analogues were not localised into the nucleus suggesting that their cytotoxic mode(s) of action are different. This study has identified novel substrates for both NQO1 and NQO2 and further work on nitrocryptolepine derivatives as a lead towards novel anticancer agents would be worthwhile.  相似文献   

20.
Lv H  Ren J  Ma S  Xu S  Qu J  Liu Z  Zhou Q  Chen X  Yu S 《PloS one》2012,7(1):e30342
Previous studies indicated that (+)-13a-(S)-deoxytylophorinine (1) showed profound anti-cancer activities both in vitro and in vivo and could penetrate the blood brain barrier to distribute well in brain tissues. CNS toxicity, one of the main factors to hinder the development of phenanthroindolizidines, was not obviously found in 1. Based on its fascinating activities, thirty-four derivatives were designed, synthesized; their cytotoxic activities in vitro were tested to discover more excellent anticancer agents. Considering the distinctive mechanism of 1 and interesting SAR of deoxytylophorinine and its derivatives, the specific impacts of these compounds on cellular progress as cell signaling transduction pathways and cell cycle were proceeded with seven representative compounds. 1 as well as three most potent compounds, 9, 32, 33, and three less active compounds, 12, 16, 35, were selected to proform this study to have a relatively deep view of cancer cell growth-inhibitory characteristics. It was found that the expressions of phospho-Akt, Akt, phospho-ERK, and ERK in A549 cells were greater down-regulated by the potent compounds than by the less active compounds in the Western blot analysis. To the best of our knowledge, this is the first report describing phenanthroindolizidines alkaloids display influence on the crucial cell signaling proteins, ERK. Moreover, the expressions of cyclin A, cyclin D1 and CDK2 proteins depressed more dramatically when the cells were treated with 1, 9, 32, and 33. Then, these four excellent compounds were subjected to flow cytometric analysis, and an increase in S-phase was observed in A549 cells. Since the molecular level assay results of Western blot for phospho-Akt, Akt, phospho-ERK, ERK, and cyclins were relevant to the potency of compounds in cellular level, we speculated that this series of compounds exhibit anticancer activities through blocking PI3K and MAPK signaling transduction pathways and interfering with the cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号