首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, dipeptidyl peptidase IV inhibitors have been noted as valuable agents for treatment of type 2 diabetes. Herein, we report the discovery of a novel potent DPP-4 inhibitor with 3H-imidazo[4,5-c]quinolin-4(5H)-one as skeleton. After efficient optimization of the lead compound 2a at the 7- and 8-positions using a docking study, we found 28 as a novel DPP-4 inhibitor with excellent selectivity against various DPP-4 homologues. Compound 28 showed strong DPP-4 inhibitory activity compared to marketed DPP-4 inhibitors. We also found that a carboxyl group at the 7-position could interact with the residue of Lys554 to form a salt bridge. Additionally, introduction of a carboxyl group to 7-position led to both activity enhancement and reduced risk for hERG channel inhibition and induced phospholipidosis. In our synthesis of compounds with 7-carboxyl group, we achieved efficient regioselective synthesis using bulky ester in the intramolecular palladium coupling reaction.  相似文献   

2.
A series of novel pyrimidinedione derivatives were designed and evaluated for in vitro dipeptidyl peptidase-4 (DPP-4) inhibitory activity and in vivo anti-hyperglycemic efficacy. Among them, the representative compounds 11, 15 and 16 showed excellent inhibitory activity of DPP-4 with IC50 values of 64.47?nM, 188.7?nM and 65.36?nM, respectively. Further studies revealed that compound 11 was potent in vivo hypoglycemic effect. The structure–activity relationships of these pyrimidinedione derivatives had been discussed, which would be useful for developing novel DPP-4 inhibitors as treating type 2 diabetes.  相似文献   

3.
A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79–25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.  相似文献   

4.
Hypoglycemic agents with a mechanism of depeptidyl peptidase IV (DPP-4) inhibition are suitable for once daily oral dosing. It is difficult to strike a balance between inhibitory activity and duration of action in plasma for inhibitors bearing an electrophilic nitrile group. We explored fused bicyclic heteroarylpiperazine substituted at the γ-position of the proline structure in the investigation of l-prolylthiazolidines lacking the electrophilic nitrile. Among them, 2-trifluoroquinolyl compound 8g is the most potent, long-lasting DPP-4 inhibitor (IC(50)=0.37nmol/L) with high selectivity against other related peptidases. X-ray crystal structure determination of 8g indicates that CH-π interactions generated between the quinolyl ring and the guanidinyl group of Arg358 enhances the DPP-4 inhibitory activity and selectivity.  相似文献   

5.
A dipeptidyl peptidase which hydrolyses the synthetic dipeptidyl peptidase (DPP) substrate, Ala2- p -nitroanilide, was purified 193-fold from the ruminal peptidolytic bacterium, Prevotella albensis M384. The enzyme was a homodimer of molecular mass 91 kDa. Its activity against Ala2- p -nitroanilide had optimal pH and temperature of 7.2 and 40°C respectively. Enzyme activity was inhibited by the serine protease inhibitors, PMSF and dichloroisocoumarin, but not by inhibitors of other categories of proteases. Synthetic substrates for DPP-1 (GlyArg- p -nitroanilide, GlyArg-4-methoxy-naphthylamide), DPP-3 (ArgArg-4-methoxynaphthylamide) and DPP-4 (GlyPro-4-methoxynaphthylamide) or for leucine or alanine aminopeptidase were not hydrolysed, nor were di- or tripeptides. N-Acetyl-Ala2- p -nitroanilide was not hydrolysed. Oligopeptides with Ala, Ile, Ser or Val adjacent to the N-terminal amino acid were all hydrolysed, while peptides with basic or acidic residues in the same position were not. The purified DPP from P. albensis is therefore most similar in its catalytic properties to mammalian DPP-2.  相似文献   

6.
Fifteen adamantane derivatives were synthesized. Preliminary evaluation of their potential as dipeptidyl peptidase 4 (DPP-4) inhibitors was performed in silico by the Microcosm informational technology, PASS system, and docking in AutoDock Vina. The DPP-4 inhibition was studied in vitro. The selectivity of action of the most active compounds was studied by the direct inhibition of human plasma DPP-4 and recombinant human DPP-8. The highest activity was found for the compounds containing a nitrogen atom in the β-position of the side chain, namely, derivatives of adamantane carboxylic acid and N-(3-adamantyl-allyl) thiourea. We demonstrated that the most active compound of the series, 3,5-dimethyladamantane 1-carboxamide, was a selective DPP-4 inhibitor with IC50 53.94 μM.  相似文献   

7.
Emerging as an epidemic of the 21st century type 2 diabetes has become a major health problem throughout the globe. The number of deaths attributable to diabetes reflects the insufficient glycemic control achieved with the treatments used in recent past. DPP-4 inhibitors have been investigated as a new therapy with novel mechanisms of action and improved tolerability. DPP-4, a protease that specifically cleaves dipeptides from proteins and oligopeptides after a penultimate N-terminal proline or alanine, is involved in the degradation of a number of neuropeptides, peptide hormones and cytokines, including the incretins GLP-1 and GIP. As soon as released from the gut in response to food intake, GLP-1 and GIP exert a potent glucose-dependent insulinotropic action, thereby playing a key role in the maintenance of post-meal glycemic control. Consequently, inhibiting DPP-4 prolongs the action of GLP-1 and GIP, which in turn improves glucose homeostasis with a low risk of hypoglycemia and potential for disease modification. Indeed, clinical trials involving diabetic patients have shown improved glucose control by administering DPP-4 inhibitors, thus demonstrating the benefit of this promising new class of antidiabetics. Intense research activities in this area have resulted in the launch of sitagliptin and vildagliptin (in Europe only) and the advancement of a few others into preregistration/phase 3, for example, saxagliptin, alogliptin and ABT-279. Achieving desired selectivity for DPP-4 over other related peptidases such as DPP-8 and DPP-9 (inhibition of which was linked to toxicity in animal studies) and long-acting potential for maximal efficacy (particularly in more severe diabetic patients) were the major challenges. Whether these goals are achieved with the present series of inhibitors in the advanced stages of clinical development is yet to be confirmed. Nevertheless, treatment of this metabolic disorder especially in the early stages of the disease via DPP-4 inhibition has been recognized as a validated principle and a large number of inhibitors are presently in various stage of pre-clinical/clinical development. Sitagliptin is a new weapon in the arsenal of oral antihyperglycemic agents. This review will focus on the journey of drug discovery of DPP-4 inhibitors for oral delivery covering a brief scientific background and medicinal chemistry approaches along with the status of advanced clinical candidates.  相似文献   

8.
Dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetes agents that decrease blood glucose by preventing the degradation of endogenous glucagon-like peptide-1. The first DPP-4 was sitagliptin followed by several other agents in the class introduced to manage diabetes. Recent studies have suggested that naturally occurring compounds can exert an antidiabetes effect through DPP-4 inhibition. Such compounds may have a place in the treatment of diabetes within the diet; however, while DPP-4 inhibition alone is not associated with hypoglycemia, in combinations with other medication hypoglycemia can result, therefore, it is critical to know what herbal or food-based compounds may have these activities in the management of diabetes patients. In this review, we have outlined the compounds that have DPP-4 inhibition that may have utility in the treatment of diabetes.  相似文献   

9.
Bak EJ  Park HG  Lee C  Lee TI  Woo GH  Na Y  Yoo YJ  Cha JH 《BMB reports》2011,44(6):410-414
Chana series are new chalcone derivatives. To evaluate the possibility of Chana series as therapeutic agents of type 2 diabetes, the inhibitory effects of Chana series on the activities of α-glucosidase and DPP-4 were investigated using in vitro enzyme assays, and their effects on adipocyte differentiation were investigated in C3H10T1/2 cells. Chana 1 and Chana 7 among the Chana series showed significant inhibition of α-glucosidase activity. In DPP-4 enzyme assay, Chana 1 exhibited the highest inhibitory activity while Chana 7 did not. In MTT assay, Chana 1 did not show significant cytotoxicity up to a concentration of 250 μM, whereas cytotoxicity was observed with Chana 7 at a concentration of 300 μM. In addition, Chana 1 induced adipocyte differentiation. Therefore, Chana 1 showed inhibitory effects on α-glucosidase and DPP-4 as well as a stimulatory effect on adipocyte differentiation, suggesting that Chana 1 may be a potential beneficial agent for the treatment of type 2 diabetes.  相似文献   

10.
Dipeptidyl peptidase IV (DPP-4) inhibition is a validated therapeutic option for type 2 diabetes, exhibiting multiple antidiabetic effects with little or no risk of hypoglycemia. In our studies involving non-covalent DPP-4 inhibitors, a novel series of quinoline-based inhibitors were designed based on the co-crystal structure of isoquinolone 2 in complex with DPP-4 to target the side chain of Lys554. Synthesis and evaluation of designed compounds revealed 1-[3-(aminomethyl)-4-(4-methylphenyl)-2-(2-methylpropyl)quinolin-6-yl]piperazine-2,5-dione (1) as a potent, selective, and orally active DPP-4 inhibitor (IC??=1.3 nM) with long-lasting ex vivo activity in dogs and excellent antihyperglycemic effects in rats. A docking study of compound 1 revealed a hydrogen-bonding interaction with the side chain of Lys554, suggesting this residue as a potential target site useful for enhancing DPP-4 inhibition.  相似文献   

11.
A novel series of 4-arylcyclohexylalanine DPP-4 inhibitors was synthesized and tested for inhibitory activity as well as selectivity over the related proline-specific enzymes DPP-8 and DPP-9. Optimization of this series led to 28 (DPP-4 IC(50)=4.8 nM), which showed an excellent pharmacokinetic profile across several preclinical species. Evaluation of 28 in an oral glucose tolerance test demonstrated that this compound effectively reduced glucose excursion in lean mice.  相似文献   

12.
《Endocrine practice》2013,19(6):1050-1061
ObjectiveTo review the most recent clinical data on the safety and efficacy of dipeptidyl peptidase-4 (DPP-4) inhibitors and to evaluate their position in current treatment guidelines and algorithms.MethodsPubMed searches were performed to identify published data regarding both the safety and efficacy of DPP-4 inhibitors approved for use in the United States and clinical guidelines describing recommendations for their use.ResultsIn the past 2 years, more than 100 publications have added clinical trial data on DPP-4 inhibitors to the medical literature. Since becoming available in 2006, these agents have demonstrated an excellent safety/tolerability profile, and as add-on to metformin, DPP-4 inhibitors may have comparable glycemic efficacy as other oral agents. As a result, DPP-4 inhibitors have assumed roles in clinical practice guidelines and treatment algorithms that are comparable to the sulfonylurea class. Advantages of DPP-4 inhibitors include an oral route of administration, a mechanism of action based on glucose-stimulated insulin secretion, and a low risk of hypoglycemia. The main disadvantage associated with this class is a relatively high cost. There is also less clinical experience with DPP-4 agents than classes of agents that have been in use for decades; however, long-term data on the safety and efficacy of DPP-4 agents will be available in the near future to refine their place in therapy. From 2 large clinical trials recently reported, EXAMINE and SAVOR, this class of agents does not increase overall adverse cardiovascular outcomes nor the risk of pancreatitis or pancreatic cancer.ConclusionBased on comparisons of nonglycemic effects such as risk of hypoglycemia, weight gain, and durability, DPP-4 inhibitors may be considered as an alternative to sulfonylureas. However, direct cost may be a determining factor in the choice of therapy. (Endocr Pract. 2013;19:1050-1061)  相似文献   

13.
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80?nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49?nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10?mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.  相似文献   

14.
Dipeptidyl peptidase-IV (DPP-4) is a validated target for T2DM treatment. We previously reported a novel series of triazole-based uracil derivatives bearing aliphatic carboxylic acids with potent DPP-4 inhibitory activities in vitro, but these compounds showed poor hypoglycemic effects in vivo. Herein we further optimized the triazole moiety by amidation of the carboxylic acid to improve in vivo activities. Two series of compounds 3a-f and 4a-g were designed and synthesized. By screening in DPP-4, compound 4c was identified as a potent DPP-4 inhibitor with the IC50 value of 28.62 nM. Docking study revealed compound 4c has a favorable binding mode and interpreted the SAR of these analogs. DPP-8 and DPP-9 tests indicated compound 4c had excellent selectivity over DPP-8 and DPP-9. Further in vivo evaluations revealed that compound 4c showed more potent hypoglycemic activity than its corresponding carboxylic acid in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. The overall results have shown that compound 4c could be a promising lead for further development of novel DPP-4 agents treating T2DM.  相似文献   

15.
A series of novel azobicyclo[3.3.0]octane derivatives were synthesized and evaluated as dipeptidyl peptidase 4 (DPP-4) inhibitors. The effort resulted in the discovery of inhibitor 2a, which exhibited excellent efficacies in an oral glucose tolerance test. Introduction of methyl group (2j) could prolong the inhibition of serum DPP-4 activity.  相似文献   

16.
Numerous cytochrome P450 inhibitors have been described as effective modulators of cytochrome P450 isoforms activity in vitro. Their inhibitory efficiency may be considerably modified after in vivo application. The aim of this study was to examine the effect of oral administration of diallyl sulfide--a cytochrome P450 2E1 inhibitor and cimetidine--a cytochrome P450 2C6 and 2C11 inhibitor on rat serum concentration of phenacetin and its metabolite acetaminophen. Both inhibitors increased area under the curve (AUC(0-4 h)) for phenacetin by 50%. Only cimetidine reduced AUC(0-4 h) for acetaminophen indicating inhibition of O-deethylation activity. Quinidine--a cytochrome P450 2D subfamily and P-glycoprotein inhibitor did not change significantly phenacetin bioavailability. These results suggest that diallyl sulfide inhibits the deacetylation pathway catalysed by arylamine N-acetyl transferase. Beside cytochrome P450 1A2 other cytochrome P450 isoforms (2A6 and/or 2C11) are involved in phenacetin O-deethylation in rat.  相似文献   

17.
We have previously discovered nicotinic acid derivative 1 as a structurally novel dipeptidyl peptidase IV (DPP-4) inhibitor. In this study, we obtained the X-ray co-crystal structure between nicotinic acid derivative 1 and DPP-4. From these X-ray co-crystallography results, to achieve more potent inhibitory activity, we targeted Arg125 as a potential amino acid residue because it was located near the pyridine core, and some known DPP-4 inhibitors were reported to interact with this residue. We hypothesized that the guanidino group of Arg125 could interact with two hydrogen-bond acceptors in a bidentate manner. Therefore, we designed a series of 3-pyridylacetamide derivatives possessing an additional hydrogen-bond acceptor that could have the desired bidentate interaction with Arg125. We discovered the dihydrochloride of 1-{[5-(aminomethyl)-2-methyl-4-(4-methylphenyl)-6-(2-methylpropyl)pyridin-3-yl]acetyl}-l-prolinamide (13j) to be a potent and selective DPP-4 inhibitor that could interact with the guanidino group of Arg125 in a unique bidentate manner.  相似文献   

18.
19.
We report a design strategy to obtain potent DPP-4 inhibitors by incorporating salt bridge formation with Lys554 in the S1′ pocket. By applying the strategy to the previously identified templates, quinoline 4 and pyridines 16a, 16b, and 17 have been identified as subnanomolar or nanomolar inhibitors of human DPP-4. Docking studies suggested that a hydrophobic interaction with Tyr547 as well as the salt bridge interaction is important for the extremely high potency. The design strategy would be useful to explore a novel design for DPP-4 inhibitors having a distinct structure with a unique binding mode.  相似文献   

20.
A series of 5‐substituted analogs of 6‐aza‐2′‐deoxyuridine 5′‐monophosphate, 6‐aza‐dUMP, has been synthesized and evaluated as potential inhibitors of the two mycobacterial thymidylate synthases (i.e., a flavin‐dependent thymidylate synthase, ThyX, and a classical thymidylate synthase, ThyA). Replacement of C(6) of the natural substrate dUMP by a N‐atom in 6‐aza‐dUMP 1a led to a derivative with weak ThyX inhibitory activity (33% inhibition at 50 μM ). Introduction of alkyl and aryl groups at C(5) of 1a resulted in complete loss of inhibitory activity, whereas the attachment of a 3‐(octanamido)prop‐1‐ynyl side chain in derivative 3 retained the weak level of mycobacterial ThyX inhibition (40% inhibition at 50 μM ). None of the synthesized derivatives displayed any significant inhibitory activity against mycobacterial ThyA. The compounds have also been evaluated as potential inhibitors of mycobacterial thymidine monophosphate kinase (TMPKmt). None of the derivatives showed any significant TMPKmt inhibition. However, replacement of C(6) of the natural substrate (dTMP) by a N‐atom furnished 6‐aza‐dTMP ( 1b ), which still was recognized as a substrate by TMPKmt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号