首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, two Pt(II) and three Pt(IV) complexes with the structures of [PtL2Cl2] (1), [PtL2I2] (2), [PtL2Cl2(OH)2] (3), [PtL2Cl2(OCOCH3)2] (4), and [PtL2Cl4] (5) (L = benzimidazole as carrier ligand) were synthesized and evaluated for their in vitro antiproliferative activities against the human MCF-7, HeLa, and HEp-2 cancer cell lines. The influence of compounds 1–5 on the tertiary structure of DNA was determined by their ability to modify the electrophoretic mobility of the form I and II bands of pBR322 plasmid DNA. The inhibition of BamH1 restriction enzyme activity of compounds 1–5 was also determined. In general, it was found that compounds 1–5 were less active than cisplatin and carboplatin against MCF-7 and HeLa cell lines (except for 1, which was found to be more active than carboplatin against the MCF-7 cell line). Compounds 1 and 3 were found to be significantly more active than cisplatin and carboplatin against the HEp-2 cell line.  相似文献   

2.
New trans-[Pd(sac)2(PPhMe2)(DMSO)]·H2O (Pd) and trans-[Pt(sac)2(PPhMe2)2]·H2O (Pt) complexes (sac = saccharinate and PPhMe2 = dimethylphenylphosphine) were synthesized and characterized by elemental analysis, IR, NMR, ESI-MS spectral analyses and X-ray diffraction. The complexes were evaluated for their in vitro cytotoxicity against breast (MCF-7), colon (HCT116) and lung (A549) human cancer cell lines. The ATP viability assay displayed that Pd was biologically inactive, but Pt showed significant anticancer potency on MCF-7 cancer cells, similar to cisplatin. The results suggested that Pt targeted DNA, whereas Pd displayed higher binding affinity towards human serum albumin (HSA). Mechanism of action studies of Pt suggested apoptotic cell death due to significant increase in intracellular ROS (reactive oxygen species) levels, mitochondrial damage and formation of DNA double-strand breaks. Finally, this work represents a new example of potent transplatin anticancer complexes.  相似文献   

3.
Thiolato-bridged tri- and dinuclear platinum complexes of the types [Pt3(μ-SR)4(dppm)2]2+ (1) and [Pt2(μ-ER)2(dppm)2]2+ (2) (E=S or Se; R=alkyl or aryl; dppm=bis(diphenylphosphino)methane) have been prepared using the mononuclear precursors [Pt(ER)2(dppm)]. The complexes have been characterized by NMR (1H, 13C, 31P, 195Pt), FT-IR and FAB mass spectral data. The structure of [Pt3(μ-SC6H4CH3-4)4(dppm)2][CF3SO3]2 · 6CH2Cl2 (1d), has been established through X-ray crystallography, revealing a zig-zag arrangement of the three coordination spheres around the platinum atoms.  相似文献   

4.
Routes to the synthesis of the mixed sulfide-phenylthiolate complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ have been explored; reaction of [Pt2(μ-S)2(PPh3)4] with excess Ph2IBr proceeds readily to selectively produce this complex, which was structurally characterised as its PF6 salt. Reactions of [Pt2(μ-S)2(PPh3)4] with other potent arylating reagents (1-chloro-2,4-dinitrobenzene and 1,5-difluoro-2,4-dinitrobenzene) also produce the corresponding nitroaryl-thiolate complexes [Pt2(μ-S){μ-SC6H2(NO2)2X}(PPh3)4]+ (X = H, F). The complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ reacts with Me2SO4 to produce the mixed alkyl/aryl bis-thiolate complex [Pt2(μ-SMe)(μ-SPh)(PPh3)4]2+, but corresponding reactions with the nitroaryl-thiolate complexes are plagued by elimination of the nitroaryl group and formation of [Pt2(μ-SMe)2(PPh3)4]2+. [Pt2(μ-S)(μ-SPh)(PPh3)4]+ also reacts with Ph3PAuCl to give [Pt2(μ-SAuPPh3)(μ-SPh)(PPh3)4]2+.  相似文献   

5.
The reactions of [Pt2(μ-S)2(PPh3)4] towards a range of palladium(II) complexes containing organometallic ligands (cyclopalladated N-donor ligands, η3-allyl, phenyl) have been explored, leading to the formation of a series of cationic, trinuclear sulfido-bridged aggregates containing {Pt2PdS2} cores. [Pt2(μ-S)2(PPh3)4] also reacts with the platinum(II) hydride complex trans-[PtHCl(PPh3)2] giving the adduct [Pt2(μ-S)2(PPh3)4PtH(PPh3)]+. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4PdPh(PPh3)]PF6 and [Pt2(μ-S)2(PPh3)4PtH(PPh3)]PF6 are reported, and show the expected bis μ3-sulfido aggregates with three square-planar metal centres.  相似文献   

6.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of nickel(II) complexes has been probed using electrospray ionisation mass spectrometry coupled with synthesis and characterisation in selected systems. Reaction of [Pt2(μ-S)2(PPh3)4] with [Ni(NCS)2(PPh3)2] gives [Pt2(μ-S)2(PPh3)4Ni(NCS)(PPh3)]+, isolated as its BPh4 − salt; the same product is obtained in the reaction of [Pt2(μ-S)2(PPh3)4] with [NiBr2(PPh3)2] and KNCS. An X-ray structure determination reveals the expected sulfide-bridged structure, with an N-bonded thiocyanate ligand and a square-planar coordination geometry about nickel. A range of nickel(II) complexes NiL2, containing β-diketonate, 8-hydroxyquinolinate, or salicylaldehyde oximate ligands react similarly, giving [Pt2(μ-S)2(PPh3)4NiL]+ cations.  相似文献   

7.
《Inorganica chimica acta》2006,359(5):1559-1572
Degradation reactions of scorpionates were observed in the presence of transition metal salts MX2 to give complexes of transition metal and pyrazole derivatives. Otherwise, pyrazolato complexes of transition metals and weakly coordinating anions such as nitrates have been synthesized from transition metal nitrates and 3-phenyl- and 4-phenyldiazo-pyrazole. A number of complexes with pyrazole derivatives as ligands, [Zn(3-tBupzH)2Cl2], [Fe2(3-Phpz)6Cl4], [Cu(pzH)4Br2], [Ni(py)2(pzH)2Cl2], [Li(THF)4][Ti2(μ-pz)3Cl4(NMe2)2], [Zn2(μ-3-Phpz)2(3-PhpzH)2][(NO3)2], [M(3-PhpzH)4(NO3)2] (M = Co, Ni, Cu, Zn, Cd), [Zn(3-PhpzH)2(NO3)2], [Zn(4-PhNNpzH)2(NO3)2](H2O), and [Cd(4-PhNNpzH)2(NO3)2(H2O)2], have been crystallized and characterized by single-crystal X-ray diffraction.  相似文献   

8.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

9.
Reaction of [Pt2(μ-S)2(PPh3)4] with a number of transition metal-iodo complexes leads to the formation of the cationic iodo analogue [Pt2(μ-S)(μ-I)(PPh3)4]+, identified using electrospray ionisation mass spectrometry (ESI MS). Synthetic routes to this complex were developed, using the reaction of [Pt2(μ-S)2(PPh3)4] with either [PtI2(PPh3)2] or elemental iodine. The complex was characterised by NMR spectroscopy, ESI MS and an X-ray structure determination, which reveals the presence of a planar, disordered {Pt2SI}+ core. Monitoring the iodine reaction by ESI MS allows the identification of various iodine species, including the short-lived intermediate [Pt2(μ-S)2(PPh3)4I]+, which allows a mechanism for the reaction to be proposed.  相似文献   

10.
Complex [PtMe2(triphos-P,P′)], (1) where the linear triphosphine triphos [=bis(diphenylphosphinoethyl)phenylphosphine] acts as a bidentate ligand, can be easily converted in a variety of new complexes due to the reactivity of the free phosphorus donor. The selective oxidation of the uncoordinated phosphorus gave [PtMe2(triphosPO-P,P′)] whose X-ray crystal structure is here reported; from the reactions of 1 with platinum and non platinum precursors homotrimetallic [Pt3Me4XY(triphos)2] (X=Y=Me, Cl, I, X=Me, Y=Cl) and heterotrimetallic ([Pt2PdMe4Cl2(triphos)2] and [Pt2RhMe4(cod)(triphos)2]PF6) complexes were obtained where triphos acts as a chelating/bridging ligand. When 1 was treated with triflic acid in the presence of a neutral electron donor L (L=SMe2, pyridine, PPh3), complexes [PtL(triphos)]2+ were rapidly recovered in high yields. The protonolysis of 1 in the presence of CO and methanol gave the new organometallic complex [Pt(COOMe)(triphos)]OTf.  相似文献   

11.
The reactions of [Pt2(μ-E)2(PPh3)4] (E = S, Se) with cis-1,4-dichlorobut-2-ene (cis-ClCH2CHCHCH2Cl) give the dichalcogenolate complexes [Pt2(μ-ECH2CHCHCH2E)(PPh3)4]2+; an X-ray structure determination on the thiolate complex was carried out. The complexes give the expected dications in ESI mass spectra recorded at very low cone voltages, but at moderate cone voltages undergo facile fragmentation via a retro-Diels-Alder reaction and loss of 1,3-butadiene, giving the dichalcogenide species [Pt2(μ-E2)(PPh3)4]2+. Analogous species containing bidentate phosphine or arsine ligands have been previously generated electrochemically, and studied theoretically.  相似文献   

12.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

13.
Alkylation reactions of the nucleophilic platinum(II) sulfide complex [Pt2(μ-S)2(PPh3)4] with functionalised alkylating agents have been investigated as a versatile synthetic route to dinuclear, cationic sulfide-thiolate complexes of the type [Pt2(μ-S)(μ-SR)(PPh3)4]+, extending the range of thiolate complexes that can be prepared using this methodology. A wide range of functional groups can be incorporated, using appropriate alkylating agents, and include ketone, ester, amide, hydrazone, semicarbazone, thiosemicarbazone, oxime, guanidine, urea and thiourea groups.  相似文献   

14.
Treatment of the ligands 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo), 1,9-bis(3,5-dimethyl-1-pyrazolyl)-3,7-dithianonane (bddn), and 1,6-bis(3,5-dimethyl-1-pyrazolyl)-2,5-dithiahexane (bddh) with several platinum starting materials as K2PtCl4, PtCl2, [PtCl2(CH3CN)2] and [PtCl2(PhCN)2] was developed under different conditions. The reactions did not yield pure products. The ratio of the NSSN, NS, SS, NN, and 2NS isomers has been calculated through NMR experiments. Treatment of the mixtures of complexes with NaBPh4 affords [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements, IR and 1H and 13C NMR spectroscopy. The X-ray structures of the complexes [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) have also been determined. In these complexes, the metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether sulfur atoms. When the [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) complexes were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1), a mixture of isomers was obtained.  相似文献   

15.
The coordination chemistry of the metalloligand [Pt2(μ-S)2(PPh3)4] towards cobalt(II) and cobalt(III) centres has been explored using an electrospray ionisation mass spectrometry (ESI MS)-directed methodology. Reaction of [Pt2(μ-S)2(PPh3)4] with CoCl2·6H2O in methanol gave a green-yellow suspension of the known adduct [Pt2(μ-S)2(PPh3)4CoCl2], and the CoBr2 adduct could be similarly prepared. When in situ-generated [Pt2(μ-S)2(PPh3)4CoCl2] is reacted with 8-hydroxyquinoline (HQ) and base, the initial product is the cobalt(II) adduct [Pt2(μ-S)2(PPh3)4CoQ]+, which is then converted in air to the cobalt(III) adduct [Pt2(μ-S)2(PPh3)4CoQ2]+, isolated as its hexafluorophosphate salt. The corresponding picolinate (Pic) derivative [Pt2(μ-S)2(PPh3)4Co(Pic)2]+ was similarly prepared, however reaction of [Pt2(μ-S)2(PPh3)4], CoCl2·6H2O and 8-(tosylamino)quinoline (HTQ) produced only the cobalt(II) adduct [Pt2(μ-S)2(PPh3)4CoTQ]+. Reactions of [Pt2(μ-S)2(PPh3)4], CoCl2·6H2O and dithiocarbamates gave cobalt(III) complexes [Pt2(μ-S)2(PPh3)4Co(S2CNR2)2]+ [R = Et or R2 = (CH2)4], and proceeded much more rapidly, consistent with the known ability of the dithiocarbamate ligand to stabilize cobalt in higher oxidation states. A study of the fragmentation of cobalt(III) adducts by positive-ion ESI mass spectrometry indicated that [Pt2(μ-S)2(PPh3)4CoQ2]+ fragments to form the radical cation [Pt2(μ-S)2(PPh3)4]+, which could also be generated by ESI MS analysis of [Pt2(μ-S)2(PPh3)4] in methanol-NaOH solution. In contrast, the corresponding indium(III) derivative [Pt2(μ-S)2(PPh3)4InQ2]+, and the cobalt(III) dithiocarbamate [Pt2(μ-S)2(PPh3)4Co(S2CN(CH2)4)2]+ are much more reluctant to fragment under analogous conditions, and the differences are discussed in terms of cobalt(III) redox chemistry.  相似文献   

16.
The reactions of [Pt2(μ-S)2(PPh3)4] with α,ω-dibromoalkanes Br(CH2)nBr (n = 4, 5, 6, 8, 12) gave mono-alkylated [Pt2(μ-S){μ-S(CH2)nBr}(PPh3)4]+ and/or di-alkylated [Pt2(μ-S(CH2)nS}(PPh3)4]2+ products, depending on the alkyl chain length and the reaction conditions. With longer chains (n = 8, 12), intramolecular di-alkylation does not proceed in refluxing methanol, with the mono-alkylated products [Pt2(μ-S){μ-S(CH2)nBr}(PPh3)4]+ being the dominant products when excess alkylating agent is used. The bridged complex [{Pt2(μ-S)2(PPh3)4}2{μ-(CH2)12}]2+ was accessible from the reaction of [Pt2(μ-S)2(PPh3)4] with 0.5 mol equivalents of Br(CH2)12Br. [Pt2(μ-S){μ-S(CH2)4Br}(PPh3)4]+ can be cleanly isolated as its BPh4 salt, but undergoes facile intramolecular di-alkylation at −18 °C, giving the known species [Pt2(μ-S(CH2)4S}(PPh3)4]2+. The reaction of I(CH2)6I with [Pt2(μ-S)2(PPh3)4] similarly gives [Pt2(μ-S){μ-S(CH2)6I}(PPh3)4]+, which is fairly stable towards intramolecular di-alkylation once isolated. These reactions provide a facile route to ω-haloalkylthiolate complexes which are poorly defined in the literature. X-ray crystal structures of [Pt2(μ-S){μ-S(CH2)5Br}(PPh3)4]BPh4 and [Pt2(μ-S(CH2)5S}(PPh3)4](BPh4)2 are reported, together with a study of these complexes by electrospray ionisation mass spectrometry. All complexes fragment by dissociation of PPh3 ligands, and the bromoalkylthiolate complexes show additional fragment ions [Pt2(μ-S){μ-S(CH2)n−2CHCH2}(PPh3)m]+ (m = 2 or 3; m ≠ 4), most significant for n = 4, formed by elimination of HBr.  相似文献   

17.
Further studies have been carried out into the reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of activated alkylating agents of the type RC(O)CH2X (R = organic moiety, e.g. phenyl, pyrenyl; X = Cl, Br). Alkylation of both sulfide centers is observed for PhC(O)CH2Br, 3-(bromoacetyl)coumarin [CouC(O)CH2Br], and 1-(bromoacetyl)pyrene [PyrC(O)CH2Br], giving dications [Pt2{μ-SCH2C(O)R}2(PPh3)4]2+, isolated as their PF6 salts. The X-ray structure of [Pt2{μ-SCH2C(O)Ph}2(PPh3)4](PF6)2 shows the presence of short Pt?O contacts. In contrast, the corresponding chloro compounds [typified by PhC(O)CH2Cl] and imino analogues [e.g. PhC(NOH)CH2Br] do not dialkylate [Pt2(μ-S)2(PPh3)4]. The ability of PhC(O)CH2Br to dialkylate [Pt2(μ-S)2(PPh3)4] allows the synthesis of new mixed-alkyl dithiolate derivatives of the type [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)4]2+ (R = Et or n-Bu), through alkylation of in situ-generated monoalkylated compounds [Pt2(μ-S)(μ-SR)(PPh3)4]+ (from [Pt2(μ-S)2(PPh3)4] and excess RBr). In these heterodialkylated systems ligand replacement of PPh3 occurs by the bromide ions in the reaction mixture forming monocations [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+. This ligand substitution can be easily suppressed by addition of PPh3 to the reaction mixture. The complex [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ was crystallographically characterized. X-ray crystal structures of the bromide-containing complexes [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+ (R = Et, Bu) are also reported. In both structures the coordinated bromide is trans to the SCH2C(O)Ph ligand, which adopts an axial position, while the ethyl and butyl substituents adopt equatorial positions, in contrast to the structures of the dialkylated complexes [Pt2{μ-SCH2C(O)Ph}2(PPh3)4]2+ and [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ (and many other known analogues) where both alkyl groups adopt axial positions.  相似文献   

18.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a wide range of platinum(II) and palladium(II) chloride complex substrates [L2MCl2] has been explored, using the technique of electrospray ionisation mass spectrometry to directly analyse reaction solutions. In the majority of cases, products are formed by addition of the ML22+ fragment to the {Pt2S2} core, giving trinuclear species [Pt2(μ-S)2(PPh3)4ML2]2+. The adducts with Pt(diene) [diene=cyclo-octa-1,5-diene (cod), norbornadiene], Pd(cod), Pd(bipy) (bipy=2,2-bipyridine), Pt(PMe3)2 and Pt(PTA)2 (PTA=phosphatriaza-adamantane) moieties were synthesised and characterised on the macroscopic scale, with [Pt2(μ-S)2(PPh3)4Pt(cod)] (BF4)2 and [Pt2(μ-S)2(PPh3)4Pd(bipy)] (PF6)2 also characterised by X-ray diffraction studies. No metal scrambling was found to occur, as has been observed in some previous cases involving the related complexes [Pt2(μ-Se)2(PPh3)4] and [Pt2(μ-S)2(dppe)2] (dppe=Ph2PCH2CH2PPh2). With cis-[PtCl2(SOMe2)2] the species [Pt2(μ-S)2(PPh3)4PtCl(SOMe2)]+ was formed, as a result of the lability of the SOMe2 ligand. With palladium(II)-phosphine systems, the observed product species is dependent on the phosphine; the bulky PPh3 ligand in [PdCl2(PPh3)2] leads primarily to the analogous known species [Pt2(μ-S)2(PPh3)4PdCl(PPh3)]+, and a small amount of the metal-scrambled species [PtPd2S2(PPh3)5Cl]+. In contrast, [PdCl2(PTA)2], containing the small PTA ligand gave [Pt2(μ-S)2(PPh3)4Pd(PTA)2]2+.  相似文献   

19.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

20.
Reaction of the metalloligand [Pt2(μ-S)2(PPh3)4] with the N-heterocyclic carbene (NHC) complexes IPrAuCl, IMesAuCl and IMesAgCl in methanol gave the first examples of metal adducts of [Pt2(μ-S)2(PPh3)4] that contain NHC ligands, namely [Pt2(μ-S)2(PPh3)4AuL]+ (L = IPr, IMes) and [Pt2(μ-S)2(PPh3)4AgIMes]+. The complexes were isolated as hexafluorophosphate salts. Reaction of [Pt2(μ-S)2(PPh3)4] with excess IPrAuCl in refluxing methanol yielded only the mono-adduct, in contrast to the behaviour with the gold(I) phosphine complex Ph3PAuCl, which undergoes double addition giving [Pt2(μ-SAuPPh3)2(PPh3)4]2+. The X-ray structure of [Pt2(μ-S)2(PPh3)4AuIPr]PF6 was determined and reveals that the ‘free’ sulfide is substantially sterically protected by the IPr ligand, accounting for the low reactivity towards addition of a second AgIPr+ moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号