首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sourdough application has been extensively increased in the last years due to the consumers demand for food consumption without the addition of chemical preservatives. Several starter cultures have been applied in sourdough bread making targeting the increase of bread self-life and the improvement of sensorial character. More specific, Lactobacillus acidophilus and Lactobacillus sakei as single and mixed cultures were used for sourdough bread making. Various sourdough breads were produced with the addition of sourdough perviously prepared with 10% w/w L. acidophilus, 10% w/w L. sakei and 5% w/w L. acidophilus and 5% w/w L. sakei at the same time. Various chemical parameters were determined such as lactic acid, total titratable acidity and pH. The results revealed that the produced sourdough bread made with sourdough containing the mixed culture was preserved for more days (12 days) than all the other breads produced in the frame of this study, since it contained lactic acid in higher concentrations. The respective total titratable acidity varied between 10.5 and 11 ml NaOH N/10. The same sourdough bread had a firmer texture, better aroma, flavor and overall quality compared to other sourdough breads examined in this study, as shown by sensory evaluation tests and results obtained through SPME GC–MS analysis, which revealed significant differences among the different bread types.  相似文献   

2.
Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.  相似文献   

3.
Specific growth rate of bifidobacteria cultured on different sugars   总被引:1,自引:0,他引:1  
The ability of six bifidobacterial strains (3 of human origin and 3 isolates from fermented milk products) to utilize glucose, lactose, melezitose, sucrose, raffinose, and stachyose was determined. Dairy-related bifidobacterial strains were identified asBifidobacterium animalis (2 strains) or asB. pseudolongum (1 strain). Human strains includedB. longum (2 strains) andB. breve (1 strain). All strains fermented lactose, sucrose, raffinose, and stachyose. Melezitose was utilized only byB. longum. B. pseudolongum did not ferment either glucose or melezitose. All isolates had a higher specific growth rate on raffinose and stachyose than on glucose. Dairy strains grew slowly on glucose compared to human strains.  相似文献   

4.
Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19–63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G′ and G″, respectively) at 35 °C, and the maximum values of G′ and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.  相似文献   

5.
AIMS: To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. METHODS AND RESULTS: Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. CONCLUSIONS: It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. SIGNIFICANCE AND IMPACT OF THE STUDY: As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.  相似文献   

6.
Eight lactic acid bacteria were isolated from fermenting maize meal. They were identified as Lactobacillus brevis, L. casei, L. fermentum, Pediococcus acidilacti, P. pentosaceus, Lactobacillus spp. I and Pediococcus spp. I and II. L. brevis and Lactobacillus spp. I isolated from the spontaneously fermented maize meal together with L. brevis isolated from rye sour dough and L. plantarum from ogi, a fermented maize gruel, were selected as starter organisms. There was a decrease in the final pH from 4.9 to 3.8 and an increase in the acid equivalent and temperature of the spontaneously-generated sour maize meal at the end of 24h fermentation. There was a decrease in the pH and moisture content of the sour maize breads relative to the conventional wheat bread. An improvement in the shelf-life of the bread samples was also obtained. Crude protein values of the sour maize breads were between 4.36% and 8.87%, while crude fat contents ranged between 3.66% to 7.67%. The ash contents increased from 2.29% to 2.54% while total carbohydrate values were between 46.31% and 65.3%. Calcium, phosphorus and potassium contents ranged from 0.015, 0.26 and 0.018% to 0.036, 0.47 and 0.036% respectively. Physical examination of the bread samples showed that all were cracked and relatively hard. Weight, height and volume ranged from 316 to 380g; 4.2 to 5.2cm and 200 to 320cm3 respectively. Statistical analysis of the sensory attributes revealed a consumer acceptance of the sour maize breads, although ranking test showed preference for the baker's yeast leavened bread that served as a control.  相似文献   

7.
Eight lactic acid bacteria were isolated from fermenting maize meal. They were identified as Lactobacillus brevis, L. casei, L. fermentum, Pediococcus acidilacti, P. pentosaceus, Lactobacillus spp. I and Pediococcus spp. I and II. L. brevis and Lactobacillus spp. I isolated from the spontaneously fermented maize meal together with L. brevis isolated from rye sour dough and L. plantarum from ogi, a fermented maize gruel, were selected as starter organisms. There was a decrease in the final pH from 4.9 to 3.8 and an increase in the acid equivalent and temperature of the spontaneously-generated sour maize meal at the end of 24h fermentation. There was a decrease in the pH and moisture content of the sour maize breads relative to the conventional wheat bread. An improvement in the shelf-life of the bread samples was also obtained. Crude protein values of the sour maize breads were between 4.36% and 8.87%, while crude fat contents ranged between 3.66% to 7.67%. The ash contents increased from 2.29% to 2.54% while total carbohydrate values were between 46.31% and 65.3%. Calcium, phosphorus and potassium contents ranged from 0.015, 0.26 and 0.018% to 0.036, 0.47 and 0.036% respectively. Physical examination of the bread samples showed that all were cracked and relatively hard. Weight, height and volume ranged from 316 to 380g; 4.2 to 5.2cm and 200 to 320cm3 respectively. Statistical analysis of the sensory attributes revealed a consumer acceptance of the sour maize breads, although ranking test showed preference for the baker's yeast leavened bread that served as a control.  相似文献   

8.
Prevention of growth in wheat bread for more than 6 d of approximately 106 rope-producing Bacillus subtilis spores per gram of dough was achieved by addition of propionic or acetic acids at levels of 0·10% v/w (based on flour weight), or by addition of 15% sour dough fermented with Lactobacillus plantarum C11, Lact. brevis L62, Lact. plantarum ('vege-start 60'), Lact. plantarum (ch 20), Lact. maltaromicus (ch 15), or the commercial sour dough starter culture, Lact. sanfrancisco L99. These cultures resulted in an amount of total titratable acids above 10 in the sour dough and a pH value below 4·8 in the final bread. Bacteriocin-producing lactic acid bacteria added as starter cultures in wheat dough and nisin (Nisaplin) at levels up to 100 p.p.m. g−1 flour had no effect against B. subtilis and B. licheniformis strains, despite the fact that nisin-producing strains of Lactococcus lactis ssp. lactis among 186 strains of lactic acid bacteria had demonstrated inhibitory activity against B. subtilis and B. licheniformis in an agar spot assay.  相似文献   

9.
The bifidobacterial and lactobacillus populations of fecal samples collected from 10 human subjects were studied. The numbers of bifidobacteria were similar in the fecal samples of all of the subjects, but lactobacillus numbers varied, even between samples collected from the same individual. Analysis of the composition of the bacterial populations by ribotyping and pulsed-field gel electrophoresis to differentiate between strains showed that, at least for the numerically predominant strains, each subject harbored a unique collection of bifidobacteria and lactobacilli. Predominant bifidobacterial and lactobacillus strains detected in the feces of each subject were used in immunological assays (lymphocyte transformation, serum antibody titers) to determine the influence of the bacteria on the immune system of their host. Immunoglobulin G antibodies reactive with lactobacilli were detected at high concentrations; antibodies reactive with bifidobacteria were present at lower concentrations. The antibodies appeared to be genus specific rather than strain specific. The results of the study emphasized the complexity of the relationship that exists between the intestinal microflora and the human host.  相似文献   

10.
Resistance or susceptibility of bifidobacteria to lysozyme and growth of bifidobacteria in human milk were tested. Susceptible bifidobacterial strains stopped their growth almost immediately after the addition of lysozyme (400 μg/ml), moderately susceptible strains exhibited reduced growth rate, and growth curves of resistant strains were not affected. Strains of human origin were more resistant to lysozyme than animal strains. While strains of B. bifidum grew well in human milk samples, the growth B. animalis strains was inhibited after inoculation to human milk. The resistance to lysozyme seems to be a promising criterion for the selection of new probiotic bifidobacterial strains.  相似文献   

11.
Breast-fed infants often have intestinal microbiota dominated by bifidobacteria in contrast to formula-fed infants. We found that several bifidobacterial strains produce a lacto-N-biosidase that liberates lacto-N-biose I (Galbeta1,3GlcNAc; type 1 chain) from lacto-N-tetraose (Galbeta1,3GlcNAcbeta1,3Galbeta1,4Glc), which is a major component of human milk oligosaccharides, and subsequently isolated the gene from Bifidobacterium bifidum JCM1254. The gene, designated lnbB, was predicted to encode a protein of 1,112 amino acid residues containing a signal peptide and a membrane anchor at the N and C termini, respectively, and to possess the domain of glycoside hydrolase family 20, carbohydrate binding module 32, and bacterial immunoglobulin-like domain 2, in that order, from the N terminus. The recombinant enzyme showed substrate preference for the unmodified beta-linked lacto-N-biose I structure. Lacto-N-biosidase activity was found in several bifidobacterial strains, but not in the other enteric bacteria, such as clostridia, bacteroides, and lactobacilli, under the tested conditions. These results, together with our recent finding of a novel metabolic pathway specific for lacto-N-biose I in bifidobacterial cells, suggest that some of the bifidobacterial strains are highly adapted for utilizing human milk oligosaccharides with a type 1 chain.  相似文献   

12.
Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96°C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 104 rope-producing B. subtilis G1 spores per cm2 on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.  相似文献   

13.
A hydrophobic grid membrane filtration (HGMF) colony hybridization assay was developed that allows strain-specific differentiation of defined bacterial populations. The randomly amplified polymorphic DNA (RAPD) fingerprinting technique was used to identify potential signature nucleic acid sequences unique to each member of a commercial cheese starter culture blend. The blend consisted of two closely related Lactococcus lactis subsp. cremoris strains, 160 and 331, and one L. lactis subsp. lactis strain, 210. Three RAPD primers (OPX 1, OPX 12, and OPX 15) generated a total of 32 products from these isolates, 20 of which were potential strain-specific markers. Southern hybridization analyses revealed, that the RAPD-generated signature sequences OPX15-0.95 and a 0.36-kb HaeIII fragment of OPX1-1.0b were specific for strains 331 and 210, respectively, within the context of the test starter culture blend. These strain-specific probes were used in a HGMF colony hybridization assay. Colony lysis, hybridization, and nonradioactive detection parameters were optimized to allow specific differentiation and quantitation of the target strains in the mixed starter culture population. When the 210 and 331 probes were tested at their optimal hybridization temperatures against single cultures, they detected 100% of the target strain CFUs, without cross-reactivity to the other strains. The probes for strains 210 and 331 also successfully detected their targets in blended cultures even with a high background of the other two strains.  相似文献   

14.
Arabinoxylan oligosaccharides (AXOS) are prebiotic carbohydrates with promising health-promoting properties that stimulate the activity of specific colon bacteria, in particular bifidobacteria. However, the mechanisms by which bifidobacterial strains break down these compounds in the colon is still unknown. This study investigates AXOS consumption of a large number of bifidobacterial strains (36), belonging to 11 different species, systematically. To determine their degradation mechanisms, all strains were grown on a mixture of arabinose and xylose, xylo-oligosaccharides, and complex AXOS molecules as the sole added energy sources. Based on principal component and cluster analyses of their different arabinose substituent and/or xylose backbone consumption patterns, five clusters that were species independent could be distinguished among the bifidobacterial strains tested. In parallel, the strains were screened for the presence of genes encoding several putative AXOS-degrading enzymes, but no clear-cut correlation could be made with the different degradation mechanisms. The intra- and interspecies differences in the consumption patterns of AXOS indicate that bifidobacterial strains could avoid competition among each other or even could cooperate jointly to degrade these complex prebiotics. The knowledge gained on the AXOS degradation mechanisms in bifidobacteria can be of importance in the rational design of prebiotics with tailor-made composition and thus increased specificity in the colon.  相似文献   

15.
Staphylococcus xylosus is a commensal of the skin of humans and animals and a ubiquitous bacterium naturally present in food. It is one of the major starter cultures used for meat fermentation, but a few strains could potentially be hazardous and are related to animal opportunistic infections. To better understand the genetic diversity of S. xylosus intraspecies, suppressive and subtractive hybridization (SSH) was carried out with the S. xylosus C2a strain, a commensal of human skin, used as the driver for three tester strains, S04002 used as a starter culture, S04009 isolated from cow mastitis, and 00-1747, responsible for mouse dermatitis. SSH revealed 122 tester-specific fragments corresponding to 149 open reading frames (ORFs). A large proportion of these ORFs resembled genes involved in specific metabolisms. Analysis of the distribution of the tester-specific fragments in 20 S. xylosus strains of various origins showed that the S. xylosus species could be divided into two clusters with one composed only of potentially hazardous strains. The genetic content diversity of this species is colocalized in a region near the origin of replication of the chromosome. This region of speciation previously observed in the Staphylococcus genus corresponded in S. xylosus species to a strain-specific region potentially implicated in ecological fitness.  相似文献   

16.
The high-molecular-weight (HMW) subunits of wheat glutenin are the major determinants of the gluten visco-elasticity that allows wheat doughs to be used to make bread, pasta and other food products. In order to increase the proportions of the HMW subunits, and hence improve breadmaking performance, particle bombardment was used to transform tritordeum, a fertile amphiploid between wild barley and pasta wheat, with genes encoding two HMW glutenin subunits (1Ax1 and 1Dx5). Of the 13 independent transgenic lines recovered (a transformation frequency of 1.4%) six express the novel HMW subunits at levels similar to, or higher than, those of the endogenous subunits encoded on chromosome 1B. Small-scale mixograph analysis of T2 seeds from a line expressing the transgene for 1Dx5 indicated that the addition of novel HMW subunits can result in significant improvements in dough strength and stability, thus demonstrating that transformation can be used to modify the functional properties of tritordeum for improved breadmaking. Received: 15 January 1999 / Accepted: 5 February 1999  相似文献   

17.
The “cocktail” of human origin rifampicin-resistant bifidobacteria (RRBs) and RRBs from commercial products was administrated to 9 volunteers aged from 22 to 46 years and the survival ability in gastrointestinal tract of these strains was determined. Bifidobacteria represented 0–8 % of total anaerobes detected in gastrointestinal tract of volunteers before the administration of probiotic strains. After the administration of probiotics, bifidobacterial counts increased to 16 % of total bacterial counts. RRBs formed 9–44 % of total counts of bifidobacteria. Then, the counts of RRBs decreased at day 7 after administration, and they were not detected after 14 d. In our study, suitable probiotic bifidobacterial strains for human should be chosen on the basic of in vitro test but the results showed that no strain was able to colonize human tract permanently.  相似文献   

18.
A set of 118 strains of the species Lactobacillus rhamnosus was collected, including probiotic strains, research strains with potential probiotic properties, food starter cultures, and human isolates. The majority of the strains were collected from companies, hospitals, or culture collections or were obtained after contacting authors who reported clinical case studies in the literature. The present work aimed to reveal the genotypic relationships between strains of these diverse sources. All strains were initially investigated using fluorescent amplified fragment length polymorphism (FAFLP) with three different primer combinations. Numerical analysis of FAFLP data allowed (i) confirmation of the identification of all strains as members of L. rhamnosus and (ii) delineation of seven stable intraspecific FAFLP clusters. Most of these clusters contained both (potentially) probiotic strains and isolates of human origin. For each of the clusters, strains of different sources were selected for pulsed-field gel electrophoresis (PFGE) of macrorestriction fragments obtained with the enzymes NotI and AscI. Analysis of PFGE data indicated that (i) some (potentially) probiotic strains were indistinguishable from other probiotic strains, suggesting that several companies may use duplicate cultures of the same probiotic strain, and (ii) in a number of cases human isolates from sterile body sites were indistinguishable from a particular probiotic strain, suggesting that some of these isolates may be reisolations of commercial strains.  相似文献   

19.
Lactobacillus helveticus is the dominant organism in natural starter cultures used for the production of typical Italian cheeses. In this study, 74 L. helveticus strains, isolated from grana and provolone cheese natural whey starters, were distinguished with respect to their origin by using both cell wall protein profiles and chemometric evaluation of some phenotypic parameters, such as the ability to acidify cultures and the presence of nonspecific proteolytic and peptidase activities. Cell wall protein patterns allowed L. helveticus strains to be distinguished with respect to their source of isolation. Among the different phenotypes studied, no single specific parameter permitted the two groups of strains to be separated. A good discrimination between the two groups of L. helveticus species was obtained by multivariate statistical techniques, which permitted the extraction of all of the discriminating information retained in the phenotypic activities. Associations between strain phenotype expression and dairy environmental ecosystem source are discussed.  相似文献   

20.
Because of their potential health risk the amount of the Fusariumtoxins deoxynivalenol (DON) and zearalenone (ZEA) is an important quality parameter for cereals.With regard to the fact that in the european union limiting values for these Fusarium-toxins are discussed, the analysis of cerealfood from the market makes sense in order to get a realistic image of the load of consumers. Cereals mainly get in human food chain in form of bread and other bakery products. Publications about evaluation of the influence of the breadmaking process (removal or destruction of mycotoxins by fermentation and heating) are rare and sometimes give contrary results. [3, 4]Our food control laboratory started a monitoring program in order to get more informations about the influence of this bread-making process. Therefore bread and the flours the bread made of are taken from bakeries in district of Tübingen (Germany). First results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号