首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Induction of synthesis of cellulolytic enzymes in Trichoderma reesei QM 9414 by cellobiono-1,5-lactone (CBL) has been investigated in a replacement system lacking additional carbon source. CBL induced cellulase secretion optimally at pH 5 and a concentration of 70 g/ml. Higher concentrations lead to lower induction. De novo induction of cellulases was proven by the inhibitory effect of cycloheximide addition. Induction by CBL was shown to act synergistically on induction by sophorose, as it decreased the concentration of sophorose required for maximal induction. Maximal endo--1,4-glucanase activities induced by either sophorose or CBL were comparable. The CBL-induced cellulase system contained all the major cellulolytic enzymes of T. reesei, i.e. cellobiohydrolase I and II, and endoglucanase I, as shown by SDS-PAGE, Western blotting and detection with specific mono- and polyclonal antibodies. No differences were seen in the types of individual enzymes formed upon induction by either sophorose or CBL. No other hydrolytic enzymes appear to be induced by CBL (i.e. amylase, laminarinase, xylanase).Abbreviations SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium-dodecylsulfate - CBL cellobiono-1,5-lacton - CBH cellobiohydrolase - EG endoglucanase - IgG immunoglobulin G  相似文献   

2.
Sophorose lipids produced from sucrose   总被引:3,自引:0,他引:3  
Summary Torulopsis bombicola produced sophorose lipids when growing on sucrose in similar yields as if growing on glucose. Besides yield the composition of sophorose lipids characterized by TLC/FID was greatly influenced by yeast extract concentration in the shake flasks in contrary to highly aerated fermenter.  相似文献   

3.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

4.
The effect of ammonium on growth ofCandida apicola and on production of sophorose lipid was studied. Sophorose lipid production increased with increasing initial ammonium sulphate concentration. Both growth and product formation were strongly reduced at 73.6mm ammonium. With 58.9mm ammonium a microcrystalline sophorose lipid was formed. The ratio of the two isomers of the sophorose lipid, harbouring either - or -1 hydroxy fatty acid, was influenced by the initial concentration of ammonium. Both production kinetics, yields and profiles of the total cellular fatty acids express alterations with enlarged ammonium concentrations. These results suggest regulatory effects of ammonium onC. apicola and its sophorose lipid synthesis.Dedicated to Prof. Dr. Fritz Wagner on the occasion of his 65th birthday  相似文献   

5.
Summary Candida (Torulopsis) bombicola ATCC 22214 produces 180 g/l sophorose lipids using glucose and oleic acid (technical grade) as combined substrates in an extended fed-batch cultivation. Excess of oleic acid generated a paste-like product. However, only when oleic acid was not detectable during the whole run of cultivation, a microcrystalline product precipitated. The unsaturated C-18 fatty acids of the technical grade oleic acid were transferred unchanged into the sophorose lipid.  相似文献   

6.
Summary Poplar wood chips were pretreated by steam explosion and the cellulosic residue was hydrolysed with the cellulase complex ofTrichoderma reesei CL 847. The hydrolysate contains the (1–6) disaccharide gentiobiose. Incubation of cellobiose with the same cellulase system led to the synthesis of Glc-Glc dimers which were characterized and quantified as gentiobiose, cellobiose, laminarabiose, sophorose and trehalose, whose origin was clarified by using carbon-13 glucose selectively labelled on C1. We propose a mechanism to explain these reversion reactions.  相似文献   

7.
Growth and lipogenesis of the fungusMucor lusitanicus306D, producing -linoleic acid, was studied under various conditions of nitrogen and carbon nutrition. Media containing food-industry wastes, such as maize extract, molasses, and protein hydrolysate, were used. The content of -linoleic acid was higher when carbohydrates (glucose and molasses) were used as carbon sources and urea was used as a nitrogen source. At a high glucose concentration (100 g/l), fed batch cultivation ensured high contents of -linoleic acid in lipids (1 g/l). After extraction of lipids, the fungus biomass was 42% protein, containing all essential amino acids. A defatted biomass was shown to be effectively assimilated by minks.  相似文献   

8.
9.
Acremonium sp. 15 a fungus isolated from soil, produces an extracellular enzyme system degrading cyclic (1→2)-β-d-glucan. This enzyme was found to be a mixture of endo-(1→2)-β-d-glucanase and β-d-glucosidase. The (1→2)-β-d-glucanase was purified to homogeneity shown by disc-electrophoresis after SP-Sephadex column chromatography, Sephadex G-75 gel filtration, and rechromatography on SP-Sephadex. The molecular weight of the enzyme was 3.6 × 104 by SDS-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was pH 9.6. The enzyme was most active at pH 4.0—4.5, and stable up to 40°C in 20 mm acetate buffer (pH 5.0) for 2 hr of incubation. This enzyme hydrolyzed only (l→2)-β-d-glucan and did not hydrolyze laminaran, curdlan, or CM-cellulose. The hydrolysis products from cyclic (1→2)-β-d-glucan were mainly sophorose.

The β-d-glucosidase was purified about 4000-fold. The rate of hydrolysis of the substrates by this β-d-glucosidase decreased in the following order: β-nitrophenyl-β-d-glucoside, sophorose, phenyl-β-d-glucoside, laminaribiose, and salicin. This enzyme has strong transfer action even at the low concentration of 0.75 mm substrate.  相似文献   

10.
J. P. F. G. Helsper 《Planta》1979,144(5):443-450
A membrane fraction, isolated from pollen tubes of Petunia hybrida, catalyses the incorporation of glucose from UDP-glucose into sucrose, cellodextrins, -glucans, sterol glucosides and polyprenol monophosphate glucose. Incorporation studies with isolated lipids and kinetic and double-labelling studies indicated that glucolipids are not intermediates in the synthesis of -glucans in this system.  相似文献   

11.
Cellobiase (-D-glucosidase) with a molecular weight of 100 kDa and pI 5.2 was isolated from the cellulolytic system of Penicillium verruculosum. Kinetic parameters of enzymatic hydrolysis of cellobiose, gentiobiose, sophorose, and synthetic substrates, i. e. methylumbelliferyl and p-nitrophenyl sugar derivatives were determined. Glucose and D-glucose--lactone competitively inhibited cellobiase (K i0.19 mM and 17 M, respectively). Glucosyl transfer reactions were studied with cellobiose as a single substrate and in the mixture of cellobiose and methylumbelliferyl cellobioside. The product composition was determined in these systems. The ratio of hydrolysis and transfer reaction rates for cellobiose conversion was calculated.  相似文献   

12.
2-Ketogluconic acid and, to a lesser extent, gluconic acid were found to be major products of glucose catabolism by phosphate-limited cultures of Klebsiella aerogenes NCTC 418, and together accounted for up to 46% of the glucose carbon that was metabolized.Although the concentrations of both acids increased sub-stantially at low growth rates, their specific rates of synthesis decreased markedly, as did the proportion of glucose converted into these products.Determination of the affinity constant, for glucose, of phosphate-limited organisms showed it to be not significantly different from that of glucose-limited organisms (K s 50 M), indicative of the phosphotransferase uptake system. And since these organisms possessed an active glucose 6-phosphate dehydrogenase, and had no detectable glucose dehydrogenase activity, it was concluded that gluconic acid and 2-ketogluconic acid arose from their corresponding phosphorylated metabolites, and not directly from glucose.  相似文献   

13.
Summary Cellobiose-grown cells of Candida wickerhamii transported cellobiose as glucose by a glucose-proton symport after previous hydrolysis of the disaccharide by an exocellular -glucosidase. Both the symport and the -glucosidase were subject to glucose-induced repression and inactivation while glucose also acted as a competitive inhibitor of the enzyme (K i 0.3 mM). Under conditions of glucose repression glucose was transported by facilitated diffusion. Cellobiose acted as a competitive inhibitor of the latter (K i 75 mM) and is possibly a low-affinity substrate, while it inhibited non-competitively the glucoseproton symport (K i 80 mM). The affinity of cellobiose for the cell-bound -glucosidase was much higher (K m 4.2 mM) than for the purified enzyme as reported by others (K m 67–225 mM). Ethanol reversibly inhibited the two glucose transport systems with exponential non-competitive kinetics. The minimum inhibitory concentrations were about 3% and 4% (w/v) for facilitated diffusion and proton symport while the respective exponential inhibition constants were 0.58 l mol-1 and 1.65 l mol-1. Ethanol affected the -glucosidase in a complex way, a major effect was deviation from Michaelis-Menten kinetics for ethanol concentrations higher than 4% (w/v), the Hill coefficient increasing up to 1.8 at 6% (w/v) ethanol.  相似文献   

14.
15.
The effect of soybean oil and glucose on the growth of Torulopsis bombicola and sophorose lipid production in continuous culture was investigated. As the dilution rate in 100 g/l glucose and 100 g/l soybean oil medium was increased, the dry cell weight and sophorose lipid concentration decreased. Sophorose lipid productivity, however, was maximum at a dilution rate of 0.03 h−1. The cell yield from glucose and the sophorose lipid production from soybean oil were approximately constant regardless of the dilution rate. The specific consumption rate of soybean oil was closely related to the specific production rate of sophorose lipid. These results suggest that soybean oil was used only for sophorose lipid production whereas glucose was used only for cell mass and maintenance. When the soybean oil concentration was varied at fixed dilution rate in 100 g/l glucose medium, a high concentration of soybean oil was found to inhibit sophorose lipid production. Received: 9 January 1997 / Received revision: 5 March 1997 / Accepted: 13 April 1997  相似文献   

16.
Summary Torulopsis bombicola (ATCC 22214) produced sophorose lipid to 80 g/l in batch culture containing 11% glucose and 10% soybean oil as carbon and energy sources. According to the carbon mass balance analysis, 13% and 37% of input carbon were channeled to cells and to products, respectively, and 50% of the total input carbon was channeled to CO2 gas in batch culture. In fed-batch culture with intermittent oil feeding, however, the carbon fractions incorporated into sophorose lipid and cells were 60% and 12%, respectively, and the carbon fraction evolved as CO2 gas was 30%. In conclusion, yield of sophorose lipid based on total input carbon substrates was increased from 0.37 g/g-substrate in batch culture to 0.6 g/ g-substrate by employing a fed-batch culture.  相似文献   

17.
Summary From cellulose and cellobiose the formation of sophorose, laminaribiose, and gentiobiose was catalyzed byTrichoderma reesei culture filtrate containing exo- and endoglucanase and -glucosidase activity and from cellobiose by a broken cell suspension fromT.reesei with -glucosidase activity. The results indicate that -glucosidase is the component responsible for transglycosylation reaction catalyzed byT.reesei cellulase enzyme complex.  相似文献   

18.
Summary A strain of the bacterium Serratia marcescens, isolated from sewage sludge, can oxidise the terpene hydrocarbon -pinene to produce rans-verbenol as the major product, with verbeone and trans-sobrerol as minor products. A change in nitrogen source and inclusion of glucose as a second carbon source caused the bacterium to produce -terpineol as the major oxidation product. Products were identified by gas liquid chromatography and mass spectrometry.  相似文献   

19.
The IALB_1185 protein, which is encoded in the gene cluster for endo-β-1,2-glucanase homologs in the genome of Ignavibacterium album, is a glycoside hydrolase family (GH) 35 protein. However, most known GH35 enzymes are β-galactosidases, which is inconsistent with the components of this gene cluster. Thus, IALB_1185 is expected to possess novel enzymatic properties. Here, we showed using recombinant IALB_1185 that this protein has glycosyltransferase activity toward β-1,2-glucooligosaccharides, and that the kinetic parameters for β-1,2-glucooligosaccharides are not within the ranges for general GH enzymes. When various aryl- and alkyl-glucosides were used as acceptors, glycosyltransfer products derived from these acceptors were subsequently detected. Kinetic analysis further revealed that the enzyme has wide aglycone specificity regardless of the anomer, and that the β-1,2-linked glucose dimer sophorose is an appropriate donor. In the complex of wild-type IALB_1185 with sophorose, the electron density of sophorose was clearly observed at subsites −1 and +1, whereas in the E343Q mutant–sophorose complex, the electron density of sophorose was clearly observed at subsites +1 and +2. This observation suggests that binding at subsites −1 and +2 competes through Glu102, which is consistent with the preference for sophorose as a donor and unsuitability of β-1,2-glucooligosaccharides as acceptors. A pliable hydrophobic pocket that can accommodate various aglycone moieties was also observed in the complex structures with various glucosides. Overall, our biochemical and structural data are indicative of a novel enzymatic reaction. We propose that IALB_1185 be redefined β-1,2-glucooligosaccharide:d-glucoside β-d-glucosyltransferase as a systematic name and β-1,2-glucosyltransferase as an accepted name.  相似文献   

20.
Summary Lipids were extracted from the diploid seed and haploid pollen of Brassica napus L. Two fractions of pollen lipids, namely the diploid-specified pollen-coat and the haploid-specified internal cytoplasmic lipids were obtained. Significant correlations exist between pollen and seed generations for linoleic (182) and linolenic (183) acids. In pollen internal storage lipids, the level of 183 is positively correlated and the level of 182 is negatively correlated with the level of 183 in seed lipids. Evidence is presented that strongly supports the hypothesis that lipid biosynthesis occurs within the pollen and that synthesis is specified by haploid genes. These data support the concept of pollen selection, so that selecting among living pollen grains for superior individuals has potential as a new plant breeding tool for improving seed oil quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号