首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C P Chen  C Wagner 《Life sciences》1975,16(10):1571-1581
The uptake of 5-methyltetrahydrofolic acid (5-MTHF) by the isolated choroid plexus of hog was studied and shown to be both temperature and time dependent. Uptake of 5-MTHF by the isolated choroid plexus was a saturable process and exhibited a Kt of 0.9 × 10−6M and Vmax of 1.39 nmole/gm dry wt/min. The system did not require the presence of sodium ion nor was it ouabain sensitive. The presence of metabolic inhibitors, e.g., 2,4-dinitrophenol, did not suppress the uptake rate. Deprivation of oxygen also did not affect the rate of 5-MTHF transport. Addition of folic acid to the incubating medium led to countertransport of intracellular 5-MTHF. Efflux studies also indicated that the majority of the intracellular 5-MTHF was rapidly exchangeable and therefore probably present in the cell water in a free state. Chromatographic analyses confirmed that 5-MTHF was not metabolically altered during the transport process. It is suggested that 5-methyltetrahydrofolic acid is transported in the isolated choroid plexus via a carrier-mediated process.  相似文献   

2.
Chlorella vulgaris MSU 01 strain isolated from the sediment of the pond is able to produce molecular hydrogen in a clean way. To relate the dynamic coupling between the cultural conditions and biological responses, an original lab scale set up has been developed for hydrogen production. Different sources like mannitol, glucose, alanine, citric acid, aspartic acid, l-alanine, l-cysteine, sodium succinate and sodium pyruvate were used for algal media optimization. Corn stalk, from 1 to 5 g/L was tested for the effective algal growth and hydrogen production. The cell concentration of 1.6-19 g/L dry cell weight (DCW) was found at the 10th day. The kinetic parameters involved in the hydrogen production at 4 g/L corn stalk using the algal inoculum (50 mL) in the bioreactor volume (500 mL) was found to be with the hydrogen production potential (Ps) of 7.784 mL and production yield of (Pr) 5.534 mL respectively. The growth profile of the algal biomass at the above mentioned condition expressed the logistic model with R2 0.9988. The final pH of the broth was increased from 7.0 to 8.5-8.7. The anaerobic fermentation by C. vulgaris MSU 01 strain involved in the conversion process of complex carbon source has increased the H2 evolution rate and higher butyrate concentration in the fermentate.  相似文献   

3.
A neutralizing agent is usually employed to counteract the pH reduction during lactic acid fermentation by Rhizopus oryzae. Calcium carbonate (CaCO3) is used as such a pH controlling agent. The low solubility of CaCO3 in the fermentation broth could however lead to low efficiency in pH control and cause problems in the subsequent purification process. Therefore, an alternative agent in place of CaCO3 was examined in this study. The effect of four different neutralizing agents, including CaCO3, sodium hydroxide (NaOH), ammoniacal solution and sodium bicarbonate (NaHCO3) on lactic acid production and the morphology of the pellets were investigated. Results indicated that CaCO3 was still the preferred choice, because of the pellet morphology and the highest lactic acid concentration (43.3 g/L) obtained in the batch using 60 g/L of sweet potato starch as feedstock. It is noteworthy that the lactic acid purification is relatively easier when using NaHCO3 instead of CaCO3, due to the higher solubility of sodium lactate than calcium lactate. Therefore, even the batch with CaCO3 had a slightly higher productivity (1.23 g/L/h) than the batch with NaHCO3 (1.14 g/L/h), NaHCO3 might be the first choice for process designers whenever recovery is vital.  相似文献   

4.
The effects of ascorbic acid, sodium citrate, and sodium bicarbonate on59Fe-transferrin,54Mn-transferrin, and65Zn-transferrin uptake by the receptors disposed of plasma membrane isolated from lactating mouse mammary gland cells have been investigated. The effect of 10-2 mol/L ascorbic acid alone and in combination with NaHCO3 on the59Fe-transferrin uptake is significant and positive.54Mn-transferrin and65Zn-transferrin binding to the cell receptors are influenced optimally by 0.5 mol/L sodium bicarbonate. Sodium citrate alone or in combination with other substances always has a negative effect on binding of these three metals. It is suggested that a precise mechanism may exist with large possibilities to rearrange metal uptake and its transport from blood to milk.  相似文献   

5.
The transport of alpha-aminoisobutyric acid in freshly prepared rat liver cells was saturable and exhibited a Kt of 13.9 × 10?3M and amax of 28.6 umoles/ml intracellular fluid/30 min. The system required the presence of sodium and was sensitive to ouabain. Anaerobiosis, 2,4-dinitrophenol and low temperature suppressed the uptake of the amino acid. Efflux studies also indicated that the majority of the intracellular amino acid was rapidly exchangeable and therefore probably present in the cell water in a free state. It is suggested that alpha-aminoisobutyric acid is transported into isolated rat hepatocytes by an active carrier system.  相似文献   

6.
Shake flask experiments showed that Pseudomonas oleovorans began to be growth inhibited at 4.65 g of sodium octanoate liter-1, with total inhibition at 6 g liter-1. In chemostat studies with 2 g of ammonium sulfate and 8 g of octanoate liter-1 in the feed, the maximum specific growth rate was 0.51 h-1, and the maximum specific rate of poly-β-hydroxyalkanoate (PHA) production was 0.074 g of PHA g of cellular protein-1 h-1 at a dilution rate (D) of 0.25 h-1. When the specific growth rate (μ) was <0.3 h-1, the PHA composition was relatively constant with a C4/C6/C8/C10 ratio of 0.1:1.7:20.7:1.0. At μ > 0.3 h-1, a decrease in the percentage of C8 with a concomitant increase in C10 monomers as μ increased was probably due to the effects of higher concentrations of unmetabolized octanoate in the fermentor. At D = 0.24 h-1 and an increasing carbon/nitrogen ratio, the percentage of PHA in the biomass was constant at 13% (wt/wt), indicating that nitrogen limitation did not affect PHA accumulation. Under carbon-limited conditions, the yield of biomass from substrate was 0.76 g of biomass g of octanoate-1 consumed, the yield of PHA was 0.085 g of PHA g of octanoate-1 used, and 7.9 g of octanoate was consumed for each gram of NH4+ supplied. The maintenance coefficient was 0.046 g of octanoate g of biomass-1 h-1. Replacement of sodium octanoate with octanoic acid appeared to result in transport-limited growth due to the water insolubility of the acid.  相似文献   

7.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

8.
The optimization task was performed using the gluconic acid synthesis by the Acetobacter methanolicusMB 58 strain. The microorganisms were grown continuously on methanol as the growth substrate. After finishing the growth process by the deficiency of N and P, the gluconic acid synthesis was started by adding glucose. The synthesis process was performed continuously. The oxygen transfer rate depended on the gluconic acid concentration. During the growth process, the oxygen transfer rate reached a value of about 13 g O2 · kg?1 · h?1using a 30-l glass fermenter equipped with a 6 blade stirrer and fully baffled. This rate declined to a value of between 2 and 5 g O2 · kg?1 · h?1 in the presence of gluconic acid concentrations above 150 g gluconic acid · kg?1medium. The yield (g gluconic acid · g?1glucose) depended on the gluconic acid concentration and amounted to y = 0.7 in relation to 150 g gluconic acid · kg?1medium and y = 0.8 in relation to 200 g · kg?1medium, respectively. The fermenters were coupled with ultrafiltration moduls (Fa. ROMICON and Fa. SARTORIUS). The biomass concentrations amounted from 5 to 40 g dry mass kg?1medium. The ultrafiltration modules retained the biomass within the fermentation system. A glucose solution (30 to 50 weight percent glucose) was continuously dosed into the fermenter. The retention time was chosen between 2 and 30 h. The gluconic acid synthesis rate reached values of up to 32 g gluconic acid · kg?1 · h?1. Within a range of up to 250 g gluconic acid · kg?1medium, the acid concentration had no influence on the enzyme activity.  相似文献   

9.
In the present study, we investigated the pharmacological action of hydrogen sulfide (H2S, using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on sympathetic neurotransmission from isolated, superfused porcine iris-ciliary bodies. We also examined the effect of H2S on norepinephrine (NE), dopamine and epinephrine concentrations in isolated porcine anterior uvea. Release of [3H]NE was triggered by electrical field stimulation and basal catecholamine concentrations was measured by high performance liquid chromatography (HPLC). Both NaHS and Na2S caused a concentration-dependent inhibition of electrically evoked [3H]NE release from porcine iris-ciliary body without affecting basal [3H]NE efflux. The inhibitory action of H2S donors on NE release was attenuated by aminooxyacetic acid (AOA) and propargyglycine (PAG), inhibitors of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), respectively. With the exception of dopamine, NaHS caused a concentration-dependent reduction in endogenous NE and epinephrine concentrations in isolated iris-ciliary bodies. We conclude that H2S can inhibit sympathetic neurotransmission from isolated porcine anterior uvea, an effect that is dependent, at least in part, on intramural biosynthesis of this gas. Furthermore, the observed action of H2S donors on sympathetic transmission may be due to a direct action of this gas on neurotransmitter pools.  相似文献   

10.
Hydrogen sulfide (H2S), can produce pharmacological effects on neural and non-neural tissues from several mammalian species. The present study investigates the pharmacological action of H2S, (using sodium hydrosulfide, NaHS, and/or sodium sulfide, Na2S as donors) on amino acid neurotransmission (using [3H] d-aspartate as a marker for glutamate) from isolated, superfused bovine and porcine retinae. Isolated neural retinae were incubated in Krebs solution containing [3H] d-aspartate at 37°C. Release of [3H] d-aspartate was elicited by high potassium (K+ 50 mM) pulse. Both NaHS and Na2S donors caused an inhibition of K+-evoked [3H] d-aspartate release from isolated bovine retinae without affecting basal [3H] d-aspartate efflux yielding IC50 values of 0.006 and 6 μm, respectively. Furthermore, NaHS inhibited depolarization-evoked release of [3H] d-aspartate from isolated porcine retinae with an IC50 value of 8 μM. The inhibitory action of NaHS on [3H] d-aspartate release from porcine retinae was blocked by propargyglycine, a selective inhibitor of cystathionine γ-lyase (CSE). Our results indicate that H2S donors can inhibit amino acid neurotransmission from both isolated bovine and porcine retinae, an effect that is dependent, at least in part, on intramural biosynthesis of H2S.  相似文献   

11.
《Biomass》1989,18(2):109-126
In a comparative investigation of the chemical composition of Arundo donax L. and Miscanthus sinensis Anderss. the following experiments were performed: ash determination and ash characterization by energy dispersive X-ray analysis; determination of solubility in cyclohexane/ ethanol, hot water, 1% hydrochloric acid and sodium hydroxide; C, H and N determination; determination of Klason lignin and acid soluble lignin content; sulfuric acid hydrolysis followed by borate complex ion exchange chromatography of the monomeric sugars; isolation of milled wood lignins (MWL) and dioxane lignins (DIL) and their analysis by C, H, and OMe determination; quantitative FTIR spectroscopy of MWL; recording the molecular weight distribution curves using high performance size exclusion chromatography (HPSEC); calculation of average molecular weights, such as Mw and Mn; calculation of the heating values of the lignocellulosics and their components. The quantitative composition of the lignin from the three basic phenylpropane units is presented.M. sinensis was submitted to hydroliquefaction. The conversion process yielded 35% of a net product oil (NPO) with low oxygen content (11%), low viscosity (10−2 NS m−2), low asphaltene content (3·5%) low molecular weight (Mw 200) and with a specific gravity of c. 0·93 g cm−3. The NPO has a heating value of 39·4 MJ kg−1 and contains 55% of the carbon of the starting material and 59% of the combined heating value from the biomass and the hydrogen used for hydroliquefaction. The process yields 28% water which contains 58% of the original oxygen of the biomass. The process gives rise to 9 g solids and 32–35 g gases, whose energy content can easily be recovered.  相似文献   

12.
Infectious lactic dehydrogenase-elevating virus propagated in primary cultures of mouse peritoneal macrophages in the presence of 3H-uridine and isolated by isopycnic centrifugation was found to have a density of 1.12 g/cm3. Ribonucleic acid extracted from the virus by treatment with sodium dodecyl sulfate was single stranded with a sedimentation coefficient of approximately 48S.  相似文献   

13.
With a cell concentration of 125 g dry biomass 1–1 and a dilution rate of 0.1 h–1,Propionibacterium acidipropionici produces 30 g propionic acid 1–1 from sugar with a productivity of 3 g 1–1 h–1. The yield of propionic acid is approx. 0.36–0.45 g propionic acid g–1 sucrose and is independent of the dilution rate and cell concentration. Acetic acid is an unwanted by-product in the production of propionic acid. The concentration of acetic acid only increases slightly when the cell concentration is increased. A two-stage fermentation process was developed for the conversion of sugar or molasses of various types to propionic acid and vitamin B12. By fermentation of blackstrap molasses (from sugar beet and sugar cane) in the first fermentation stage 17.7 g propionic acid 1–1 with a yield of 0.5 g propionic acid g–1 carbohydrate was produced with a dilution rate of 0.25 h–1. In the second stage 49 mg vitamin B12 1–1 was produced at a dilution rate of 0.03 h–1.  相似文献   

14.
The production of arachidonic acid was studied in the fungus Mortierella alpina using an inexpensive medium. Glucose derived from maize starch hydrolysate was the sole carbon source and defatted soybean meal and sodium nitrate were the nitrogen sources. Optimal arachidonic acid yield (1.47 g l-1) was observed at a glucose concentration of 100 g l-1. Various treatments of defatted soybean meal to extract soluble nitrogen nutrients were evaluated. Alkali extract was the most effective for arachidonic acid production. A mixture of soybean alkali-extract protein and sodium nitrate was an excellent nitrogen source for fungal growth, lipid accumulation, and arachidonic acid production. A maximum yield of 1.87 g arachidonic acid l-1 was obtained with a soybean protein concentration of 4.6 g l-1 and a sodium nitrate concentration of 2.3 g l-1. Electronic Publication  相似文献   

15.
1. An enzyme solely localized in the nuclear fraction of rat liver was found to convert 3-hydroxyanthranilic acid into a red product that was isolated and crystallized from the reaction mixture. The product was identified as cinnabarinic acid (2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid) by comparing its properties with synthetic cinnabarinic acid. 2. The enzyme had optimum pH at 7·2. Heavy-metal ions like Ag+, Hg2+, MoO42−, Fe2+ and Cu2+ were inhibitory; Mn2+ activated the reaction to a considerable extent. 3. The reaction was inhibited by mercaptoethanol, GSH and cysteine, and activated by p-hydroxymercuribenzoate and sodium arsenite, which may suggest the involvement of disulphide groups in the reaction.  相似文献   

16.
The biosynthesis of fukinolic acid, which had been isolated from the Japanese fuki vegetable, Petasites japonicus, was investigated by feeding selected 13C-labeled compounds to axenic cultures of P. japonicus. [1,2-13C2] sodium acetate and [1-13C] L-tyrosine were incorporated into the fukiic acid sub group, while [3-13C] L-phenylalanine was incorporated into the caffeic acid moiety.  相似文献   

17.
Pseudomonas sp. LS13-1 was isolated as a producer of lactobionic acid from whey and when grown with 207 g whey l-1 (150 g lactose l-1 equivalent) and three intermittent additions of 69 g whey l-1 (50 g lactose l-1 equivalent) in a fed-batch culture at pH 5.5 in a 2-l jar fermenter, it produced 175 g lactobionic acid l-1 after 180 h. In a lactose medium it produced 240 lactobionic acid l-1 from a total of 300 g lactose l-1 after 155 h. With the addition of 20 CaCO3 l-1 instead of pH control, 290 g lactobionic acid l-1 was produced in the lactose medium after 155 h with a yield of higher than 90% (mon mol-1).  相似文献   

18.
Fragments of chopped lung from indomethacin treated guinea-pigs had an anti-aggregating effect when added to human platelet rich plasma (PRP), probably due to the production of prostacyclin (PGI2) since the effect was inhibited by 15-hydroperoxy arachidonic acid (15-HPAA, 10 μg ml?1). Both 15-HPAA (1–20 μg ml?1 min?1) and 13-hydroperoxy linoleic acid (13-HPLA, 20 μg ml?1 min?1) caused a marked enhancement of the anaphylactic release of histamine, slow-reacting substance of anaphylaxis (SRS-A) and rabbit aorta contracting substance (RCS) from guinea-pig isolated perfused lungs. This enhancement was not reversed by the concomitant infusion of either PGI2 (5 μg ml?1 min?1) or 6-oxo-prostaglandin F (6-oxo-PGF, 5 μg ml?1 min?1). Anaphylactic release of histamine and SRS-A from guinea-pig perfused lungs was not inhibited by PGI2 (10 ng - 10 μg ml?1 min?1) but was inhibited by PGE2 (5 and 10 μg ml?1 min?1). Antiserum raised to 5,6-dihydro prostacyclin (PGI1) in rabbits, which also binds PGI2, had no effect on the release of anaphylactic mediators. The fatty acid hydroperoxides may enhance mediator release either indirectly by augmenting thromboxane production or by a direct effect on sensitized cells. Further experiments to distinguish between these alternatives are described in the accompanying paper (27).  相似文献   

19.
A novel sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent was prepared by graft copolymerization with sodium alginate, acrylic acid and sodium humate in aqueous solution, using N,N’-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The effects of crosslinker, sodium alginate and sodium humate content on water absorbency of the superabsorbent were studied. The swelling behavior in solutions of various pH and the swelling kinetics in saline solutions (5 mmol/L NaCl and CaCl2) were also investigated. The results from IR analysis showed that both sodium alginate and sodium humate react with the acrylic acid monomer during the polymerization process. The introduction of sodium humate into the sodium alginate-g-poly(acrylic acid) system could enhance the water absorbency and the superabsorbent containing 10 wt% sodium humate acquired the highest water absorbency (1380 g/g in distilled water and 83 g/g in 0.9 wt% NaCl solution).  相似文献   

20.
—The kinetics of sodium dependent glutamic acid transport have been studied in desheathed frog sciatic nerve. Initial velocities have been measured as a function of both glulamic acid and sodium concentration. Lineweaver–Burk plots are constructed from these data, and the kinetic constants describing uptake are estimated. Vmax is unaffected by sodium concentration, which implies that translocation is not directly affected by sodium. K1 is sodium dependent, which implies that sodium affects the affinity of the carrier for glutamic acid. Reciprocal plots of velocity vs [Na] or K1 vs 1/[Na] are linear, suggesting that glutamic acid and sodium are co-transported on a one-to-one basis. t, the sodium concentration giving half maximal velocity of uptake, was found to vary from about 57 mm to 48 mm at glutamic acid concentrations of 1.0–10.0 ± 10?6m . A model of a mechanism by which sodium and glutamate could be co-transported is presented; the model is in very good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号