首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of Ruthenium red and tetracaine, which inhibit Ca2+-induced Ca2+ release from the isolated sarcoplasmic reticulum (e.g., Ohnishi, S.T. (1979) J. Biochem. (Tokyo) 86, 1147-1150), on several types of Ca2+ release in vitro were investigated. Ca2+ release was triggered by several methods: (1) addition of quercetin or caffeine, (2) Ca2+ jump, and (3) replacement of potassium gluconate with choline chloride to produce membrane depolarization. The time-course of Ca2+ release was monitored using stopped-flow spectrophotometry and arsenazo III as a Ca2+ indicator. Ruthenium red inhibited all of these types of Ca2+ release with the same concentration for half-inhibition C1/2 = 0.08-0.10 microM. Similarly, tetracaine inhibited these types of Ca2+ release with C1/2 = 0.07-0.11 mM. Procaine also inhibits both types of Ca2+ release induced by method 2 and 3 with C1/2 = 0.67-1.00 mM. These results suggest that Ruthenium red, tetracaine and procaine interfere with a common mechanism of the different types of Ca2+ release. On the basis of several pieces of evidence we propose that Ruthenium red and tetracaine block the Ca2+ channel of sarcoplasmic reticulum.  相似文献   

2.
3.
L Xu  G Meissner 《Biophysical journal》1998,75(5):2302-2312
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

4.
《Cell calcium》2010,47(5-6):313-322
In vascular smooth muscle cells, Ca2+ release via IP3 receptors (IP3R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) Ca2+ store contributes significantly to the regulation of cellular events such as gene regulation, growth and contraction. Ca2+ release from various regions of a structurally compartmentalized SR, it is proposed, may selectively activate different cellular functions. Multiple SR compartments with various receptor arrangements are proposed also to exist at different stages of smooth muscle development and in proliferative vascular diseases such as atherosclerosis. The conclusions on SR organization have been derived largely from the outcome of functional studies. This study addresses whether the SR Ca2+ store is a single continuous interconnected network or multiple separate Ca2+ pools in single vascular myocytes. To do this, the consequences of depletion of the SR in small restricted regions on the Ca2+ available throughout the store was examined using localized photolysis of caged-IP3 and focal application of ryanodine in guinea-pig voltage-clamped single portal vein myocytes. From one small site on the cell, the entire SR could be depleted via either RyR or IP3R. The entire SR could also be refilled from one small site on the cell. The results suggest a single luminally continuous SR exists. However, the opening of IP3R and RyR was regulated by the Ca2+ concentration within the SR (luminal [Ca2+]). As the luminal [Ca2+] declines, the opening of the receptors decline and stop, and there may appear to be stores with either only RyR or only IP3R. The SR Ca2+ store is a single luminally continuous entity which contains both IP3R and RyR and within which Ca2+ is accessed freely by each receptor. While the SR is a single continuous entity, regulation of IP3R and RyR by luminal [Ca2+] explains the appearance of multiple stores in some functional studies.  相似文献   

5.
The photooxidizing xanthene dye rose bengal (10 nM to 1 microM) stimulates rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum vesicles. Following fusion of sarcoplasmic reticulum (SR) vesicles to an artificial bilayer, reconstituted Ca2+ channel activity is stimulated by nanomolar concentrations of rose bengal in the presence of a broad-spectrum light source. Rose bengal does not appear to affect K+ channels present in the SR. Following reconstitution of the sulfhydryl-activated 106-kDa Ca2+ channel protein into a bilayer, rose bengal activates the isolated protein in a light-dependent manner. Ryanodine at a concentration of 10 nM is shown to lock the 106-kDa channel protein in a subconductance state which can be reversed by subsequent addition of 500 nM rose bengal. This apparent displacement of bound ryanodine by nanomolar concentrations of rose bengal is also directly observed upon measurement of [3H]ryanodine binding to JSR vesicles. These observations indicate that photooxidation of rose bengal causes a stimulation of the Ca2+ release protein from skeletal muscle sarcoplasmic reticulum by interacting with the ryanodine binding site. Furthermore, similar effects of rose bengal on isolated SR vesicles, on single channel measurements following fusion of SR vesicles, and following incorporation of the isolated 106-kDa protein strongly implicates the 106-kDa sulfhydryl-activated Ca2+ channel protein in the Ca2+ release process.  相似文献   

6.
To make direct measurements of Ca2+ uptake and release by the sarcoplasmic reticulum (SR) of isolated smooth muscle cells, a fluorometric method for monitoring Ca2+ uptake by striated muscle SR vesicles (Kargacin, M.E., C.R. Scheid, and T.W. Honeyman. 1988. American Journal of Physiology. 245:C694-C698) was modified. With the method, it was possible to make continuous measurements of SR function in saponin-skinned smooth muscle cells in suspension. Calcium uptake by the SR was inhibited by thapsigargin and sequestered Ca2+ could be released by Br-A23187 and thapsigargin. From the rate of Ca2+ uptake by the skinned cells and the density of cells in suspension, it was possible to calculate the Ca2+ uptake rate for the SR of a single cell. Our results indicate that the SR Ca2+ pump in smooth muscle cells can remove Ca2+ at a rate that is 45-75% of the rate at which Ca2+ is removed from the cytoplasm of intact cells during transient Ca2+ signals. From estimates of SR volume reported by others and our measurements of the amount of Ca2+ taken up by the skinned cells, we conclude that the SR of a single cell can store greater than 10 times the amount of Ca2+ needed to elicit a single transient contractile response.  相似文献   

7.
Studies of [3H]ryanodine binding, 45Ca2+ efflux, and single channel recordings in planar bilayers indicated that the fatty acid metabolite palmitoyl carnitine produced a direct stimulation of the Ca2+ release channel (ryanodine receptor) of rabbit and pig skeletal muscle junctional sarcoplasmic reticulum. At a concentration of 50 microM, palmitoyl carnitine (a) stimulated [3H]ryanodine binding 1.6-fold in a competitive manner at all pCa in the range 6 to 3; (b) released approximately 65% (30 nmol) of passively loaded 45Ca2+/mg protein; and (c) increased 7-fold the open probability of Ca2+ release channels incorporated into planar bilayers. Neither carnitine nor palmitic acid could reproduce the effect of palmitoyl carnitine on [3H]ryanodine binding, 45Ca2+ release, or channel open probability. 45Ca2+ release was induced by several long-chain acyl carnitines (C14, C16, C18) and acyl coenzyme A derivatives (C12, C14, C16), but not by the short-chain derivative C8 or by free saturated fatty acids of chain length C8 to C18, at room temperature or 36 degrees C. This newly identified interaction of esterified fatty acids and ryanodine receptors may represent a pathway by which metabolism of skeletal muscle could influence intracellular Ca2+ and may be responsible for the pathophysiology of disorders of beta-oxidation such as carnitine palmitoyl transferase II deficiency.  相似文献   

8.
Magnesium transport across sarcoplasmic reticulum (SR) vesicles was investigated in reaction mixtures of various composition using antipyrylazo III or arsenazo I to monitor extravesicular free Mg2+. The half-time of passive Mg2+ efflux from Mg2+-loaded SR was 100 s in 100 mM KCl, 150 S in 100 mM K gluconate, and 370 S in either 100 mM Tris methanesulfonate or 200 mM sucrose solutions. The concentration and time course of Mg2+ released into the medium was also measured during ATP-dependent Ca2+ uptake by SR. In reaction mixtures containing up to 3 mM Mg2+, small changes in free magnesium of 10 microM or less were accurately detected without interference from changes in free Ca2+ of up to 100 microM. Three experimental protocols were used to determine whether the increase of free [Mg2+] in the medium after an addition of ATP was due to Mg2+ dissociated from ATP following ATP hydrolysis or to Mg2+ translocation from inside to outside of the vesicles. 1) In the presence of ATP-regenerating systems which maintained constant ATP to ADP ratios and normal rates of active Ca2+ uptake, the increase of Mg2+ in the medium was negligible. 2) Mg2+ released during ATP-dependent Ca2+ uptake by SR was similar to that observed during ATP hydrolysis catalyzed by apyrase, in the absence of SR. 3) In SR lysed with Triton X-100 such that Ca2+ transport was uncoupled from ATPase activity, the rate and amount of Mg2+ release was greater than that observed during ATP-dependent Ca2+ uptake by intact vesicles. Taken together, the results indicate that passive fluxes of Mg2+ across SR membranes are 10 times faster than those of Ca2+ and that Mg2+ is not counter-transported during active Ca2+ accumulation by SR even in reaction mixtures containing minimal concentrations of membrane permeable ions that could be rapidly exchanged or cotransported with Ca2+ (e.g. K+ or Cl-).  相似文献   

9.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

10.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

11.
Recent studies indicate that the Ca(2+) permeability of the sarcoplasmic reticulum (SR) can be affected by its anionic environment. Additionally, anions could directly modulate the SR Ca(2+) pump or the movement of compensatory charge across the SR membrane during Ca(2+) uptake or release. To examine the effect of anion substitution on cardiac SR Ca(2+) uptake, fluorometric Ca(2+) measurements and spectrophotometric ATPase assays were used. Ca(2+) uptake into SR vesicles was inhibited in a concentration-dependent manner when Br(-) or I(-) replaced extravesicular Cl(-) (when Br(-) completely replaced Cl(-), uptake velocity was approximately 70% of control; when I(-) completely replaced Cl(-), uptake velocity was approximately 39% of control). Replacement of Cl(-) with SO(2)(-4) had no effect on SR uptake. Although both I(-) and Br(-) inhibited net Ca(2+) uptake, neither anion directly inhibited the SR Ca(2+) pump nor did they increase the permeability of the SR membrane to Ca(2+). Our results support the hypothesis that an anionic current that occurs during SR Ca(2+) uptake is reduced by the substitution of Br(-) or I(-) for Cl(-).  相似文献   

12.
  • 1.1. Vesicles from the sarcoplasmic reticulum of lobster muscle accumulate Ca2+ if supplied with ATP as an energy source. A search was undertaken for inhibitors of Ca2+ transport.
  • 2.2. p-Hydroxymercuribenzoate can completely inhibit Ca2+ transport and ATP hydrolysis. 2–4 Dinitrophenol inhibits uptake but not hydrolysis.
  • 3.3. Sr2+, Ba2+ and Zn2+ inhibit uptake, perhaps by competing with Ca2+ for a carrier.
  • 4.4. The vesicles contain acetylcholinesterase. Anticholinesterases can reduce —but not abolish—Ca2+ uptake. Acetylcholine has no effect on the activity of the vesicles.
  • 5.5. Ca2+ uptake is not affected by Mn2+, glutamate, pilocarpine, carnosine, caffeine, strophanthidin or tetraethylammonium.
  • 6.6. K+ is needed for maximal activity of the uptake system but not for ATP hydrolysis. Apparently K+ enhances the coupling between the energy supply and the carrier mechanism.
  相似文献   

13.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

14.
Pig coronary artery cultured smooth muscle cells were skinned using saponin. In the presence of an ATP-regenerating system and oxalate, the skinned cells showed an ATP-dependent azide insensitive Ca2+-uptake which increased linearly with time for >1 h. The Ca2+-uptake occurred with Km values of 0.20±0.03 M for Ca2+ and 400±34 M for MgATP2–. Thapsigargin and cyclopiazonic acid inhibited this uptake with IC50 values of 0.13±0.02 and 0.56±0.04 M, respectively. These properties of SR Ca2+-pump are similar to those reported for membrane fractions isolated from fresh smooth muscle of coronary artery and other arteries. However, optimum pH of the uptake in the skinned cells (6.2) was lower than that reported previously using isolated membranes (6.4–6.8).Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum - PM plasma membrane - CPA cyclopiazonic acid - DTT dithiothreitol  相似文献   

15.
The purpose of this investigation was to determine whether there is a link between sarcoplasmic reticulum (SR) glycogen status and SR Ca2+ handling. In this investigation, skeletal muscle SR was purified from female Sprague-Dawley rats (200–250 g). Glycogen was extracted from the SR purified from one hindlimb, whereas the SR purified from the contralateral limb served as control. Before removal of the tissue, the animals were anesthetized with an intraperitoneal injection of ketamine (80 mg/kg) and xylazine (10 mg/kg). Both -amylase treatment (AM) and removal of EDTA from the homogenization and storage buffers reduced the amount of glycogen associated with the SR (P < 0.05). AM treatment reduced the glycogen phosphorylase content of SR (P < 0.05). In contrast, creatine kinase (CK) and pyruvate kinase (PK) contents were increased after both glycogen extraction protocols (P < 0.05). Under exogenous ATP conditions, both AM and EDTA-free (EF) treatments resulted in an increase in Ca2+-stimulated ATPase activity when normalized to sarco(endo)plasmic reticulum calcium-ATPase (SERCA) content (P < 0.05). CK and PK-supported SR Ca2+ uptake was decreased (P < 0.05) in the AM group when normalized to SERCA and CK or SERCA and PK content, respectively. AM was more effective than the EF for extracting glycogen associated with purified SR. Glycogen extraction alters the yield of purified SR proteins and must be taken into account when investigating SR calcium handling. Removal of glycogen from purified SR causes a change in Ca2+-handling properties as measured by ATPase and uptake activities. glycogen extraction; fatigue; SERCA  相似文献   

16.
BAY-k 8644, a nifedipine analogue, promotes Ca2+ influx into excitable cells via plasma membrane voltage-sensitive Ca2+ channels. We report here that sarcoplasmic reticulum (SR) Ca2+ release channels are insensitive to BAY-k 8644, as studied in highly purified isolated fractions and in chemically skinned fibers of rabbit skeletal muscle. This result suggests that a subcellular heterogeneity exists among Ca2+ channels, at least with respect to drug-receptor sites. In the course of this study, however we found that BAY-k 8644 reversibly inhibits the SR Ca2+ pump, i.e., it decreases Ca2+ influx into the SR lumen, although at concentrations (IC50 = 3-5 X 10(-5) M) much higher than those effective on voltage-sensitive Ca2+ channels.  相似文献   

17.
The data presented in this paper concern a kinetic study of the calcium uptake by sarcoplasmic reticulum vesicles and of the hydrolysis of the substrates which support the process. The results show that substrates which are different from ATP, acetylphosphate, and carbamylphosphate are able to support calcium transport. The technique used to follow the process allows us to detect continuously the changes in the concentration of the calcium present in the external medium. In our experimental conditions the calcium uptake supported by all the high energy substrates tested proceeds for several seconds at a constant rate, presumably corresponding to the “steady state” of the process; furthermore the calcium transport is clearly Ca2+ and Mg2+ dependent: the lowering of the Ca+ concentration in the medium from 10?4 to 10?5m causes a remarkable reduction of the V of the calcium transport and an apparent increase of the affinity of the sarcoplasmic reticulum vesicles for the acylphosphates; in the absence of Mg2+, none of the substrates is able to support the calcium uptake which increases in the presence of rising amounts of Mg2+ in the reaction medium. Furthermore, both the calcium transport and the substrate hydrolysis appear to follow the Michaelis-Menten kinetics in the presence of acylphosphates but not in the presence of ATP. The hydrolytic activity of sarcoplasmic reticulum vesicles on ATP and acylphosphates reveals a clear Mg2+ dependence; furthermore, in the absence of free Ca2+ and in the presence of 5 mm Mg2+, the high energy substrates tested reveal a different susceptibility to the hydrolitic attack by sarcoplasmic reticulum vesicles.  相似文献   

18.
19.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

20.
On addition of ATP to vesicles derived from the sarcoplasmic reticulum (SR) of skeletal muscle, Ca2+ is accumulated from the external medium. Following uptake, spontaneous release of Ca2+ occurs in the presence or in the absence of ATP. These processes of Ca2+ uptake and release were simulated by using the models derived for ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227; Stefanova, Napier, East & Lee (1987) Biochem. J. 245, 723-730] and for Ca2+ release from passively loaded vesicles [McWhirter, Gould, East & Lee (1987) Biochem. J. 245, 713-722]. The simulations are consistent with measurements of the effects of pH, K+, Ca2+ and Mg2+ on uptake and release of Ca2+. The increase in maximal Ca2+ accumulation observed in the presence of maleate is explained in terms of complexing of Ca2+ and maleate within the SR. The calculated concentration of ADP generated by hydrolysis of ATP has a large effect on the simulations. The effects of an ATP-regenerating system on the measured Ca2+ uptake is explained in terms of both removal of ADP and precipitation of Ca3(PO4)2 within the vesicles. It is concluded that both the process of Ca2+ uptake and the process of Ca2+ release seen with SR vesicles can be interpreted quantitatively in terms solely of the properties of the Ca2+ + Mg2+-activated ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号