首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proline shuttle for oxidation of extramitochondrial NADH was reconstituted from soluble and mitochondrial fractions of blowfly (Phormiaregina) flight muscle. The soluble fraction catalyzed reduction of Δ′-pyrroline-5-carboxylate to proline via the action of Δ′-pyrroline-5-carboxylate reductase (EC 1.5.1.2). The reaction required NADH as hydrogen donor, NAD (P) H being ineffective in this regard. Mitochondria catalyzed regeneration of Δ′-pyrroline-5-carboxylate from proline via action of proline oxidase. The capacity of the shuttle to operate under conditions of possible competition for Δ′-pyrroline-5-carboxylate between Δ′-pyrroline-5-carboxylate reductase and Δ′-pyrroline-5-carboxylate dehydrogenase (EC 1.5.1.12) was incestigated. Results of these investigations indicate that dehydrogenase activity does not significantly interfere with shuttle activity.  相似文献   

2.
Thick filaments can move from the center of the sarcomere to the Z-disc while the isometric tension remains stable in skinned rabbit psoas fibers activated for several minutes (Horowits and Podolsky, 1987). Using the active and resting tension-length relations and the force-velocity relation, we calculated the time course and mechanical consequences of thick filament movement in the presence and absence of the elastic titin filaments, which link the ends of the thick filaments to the Z-discs and give rise to the resting tension. The calculated time course of thick filament movement exhibits a lag phase, during which the velocity and extent of movement are extremely small. This lag phase is dependent only on the properties of the cross-bridges and the initial position of the thick filament. The time course of thick filament movement in skinned rabbit psoas fibers at 7 degrees C is well fit assuming a small initial thick filament displacement away from the center of the sarcomere; this leads to a lag of approximately 80 s before any significant thick filament movement occurs. In the model incorporating titin filaments, this lag is followed by a phase of slow, steady motion during which isometric tension is stable. The model excluding titin filaments predicts a phase of acceleration accompanied by a 50% decrease in tension. The observed time course of movement and tension are consistent with the model incorporating titin filaments. The long lag phase suggests that in vivo, significant movement of thick filaments is unlikely to occur during a single contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development.  相似文献   

4.
Kraft T  Xu S  Brenner B  Yu LC 《Biophysical journal》1999,76(3):1494-1513
To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because it had been proposed from solution studies that reducing ionic strength below 50 mM also induces activation of the thin filament. For this project a novel preparation had to be established that allows recording of 2D x-ray diffraction patterns from single muscle fibers instead of natural fiber bundles. This was required to minimize substrate depletion or product accumulation within the fibers. When the calcium concentration was raised, the diffraction patterns recorded with MgATPgammaS revealed small changes in meridional reflections and layer line intensities that could be attributed in part to the effects of calcium binding to the thin filament (increase in I380, decrease in first actin layer line intensity, increase in I59) and in part to small structural changes of weakly attached cross-bridges (e.g., increase in I143 and I72). Calcium-induced small-scale structural rearrangements of cross-bridges weakly attached to actin in the presence of MgATPgammaS are consistent with our previous observation of reduced rate constants for attachment and detachment of cross-bridges with MgATPgammaS at high calcium. Yet, no evidence was found that weakly attached cross-bridges change their mode of attachment toward a stereospecific conformation when the actin filament is activated by adding calcium. Similarly, reducing ionic strength to less than 50 mM does not induce a transition from nonstereospecific to stereospecific attachment.  相似文献   

5.
The effects of laser-flash photolytic release of ATP from caged ATP [P3-1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross-bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross-bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle.  相似文献   

6.
The spatial relationships between Lys-61, Cys-374 on actin or SH1 on myosin subfragment-1 (S1) and Cys-190 on tropomyosin or Cys-133 on troponin-I (TnI) in a reconstituted thin filament were studied by fluorescence resonance energy transfer. 5-(2-Iodoacetylaminoethyl)aminonaphthalene 1-sulfonic acid (IAEDANS) attached to Lys-190 on tropomyosin or to Cys-133 on TnI was used as a donor. Fluorescein 5-isothiocyanate (FITC) attached to Lys-61 or 5-(iodoacetoamido)fluorescein (IAF) attached to Cys-374 on actin and 4-dimethylaminophenyl-azophenyl 4'-maleimide (DABMI) attached to SH1 on S1 were used as an acceptor. The transfer efficiency between AEDANS attached to Cys-190 on tropomyosin and FITC attached to Lys-61 on actin was 0.42 in the absence of troponin, 0.46 in the presence of troponin and Ca2+ and 0.55 in the presence of troponin and absence of Ca2+. The corresponding distances between the probes were calculated to be 4.7 nm, 4.6 nm and 4.3 nm respectively, assuming a random orientation factor K2 = 2/3. A large difference in the transfer efficiency from AEDANS attached to Cys-133 on TnI to FITC attached to Lys-61 on actin was observed between in the presence (0.52) and absence (0.70) of Ca2+. The corresponding distances between the probes were calculated to be 4.5 nm in the presence of Ca2+ and 3.9 nm in the absence of Ca2+. The distance between Cys-190 on tropomyosin and Cys-374 on actin was measured to be 5.1 nm and the transfer efficiency (0.35) did not change upon addition of troponin whether Ca2+ is present or not, in agreement with the previous report [Tao, T., Lamkin, M. & Lehrer, S. S. (1983) Biochemistry 22, 3059-3064]. The distance between Cys-133 on TnI and Cys-374 on actin was measured to be 4.4 nm. No detectable change in transfer efficiency (0.58) was observed between values in the presence and absence of Ca2+. These results suggest that a relative movement of the two domains of actin monomer in a reconstituted thin filament occurs in response to a change in Ca2+ concentration. The transfer efficiencies between DABMI attached to SH1 on S1 and AEDANS attached to Cys-190 on tropomyosin or Cys-133 on TnI were too small (less than 2%) for an accurate estimation of the distances, suggesting the distances are longer than 7.3 nm.  相似文献   

7.
Thick and thin filaments in asynchronous flight muscle overlap nearly completely and thick filaments are attached to the Z-disc by connecting filaments. We have raised antibodies against a fraction of Lethocerus flight muscle myofibrils containing Z-discs and associated filaments and also against a low ionic strength extract of myofibrils. Monoclonal antibodies were obtained to proteins of 800 kd (p800), 700 kd (p700), 400 kd (p400) and alpha-actinin. The positions of the proteins in Lethocerus flight and leg myofibrils were determined by immunofluorescence and electron microscopy. p800 is in connecting filaments of flight myofibrils and in A-bands of leg myofibrils. p700 is in Z-discs of flight myofibrils and an immunologically related protein, p500, is in leg muscle Z-discs. p400 is in M-lines of both flight and leg myofibrils. Preliminary DNA sequencing shows that p800 is related to vertebrate titin and nematode twitchin. Molecules of p800 could extend from the Z-disc a short way along thick filaments, forming a mechanical link between the two structures. All three high molecular weight proteins probably stabilize the structure of the myofibril.  相似文献   

8.
Recent data have expanded our understanding of Notch signalling by identifying a C2 domain at the N‐terminus of Notch ligands, which has both lipid‐ and receptor‐binding properties. We present novel structures of human ligands Jagged2 and Delta‐like4 and human Notch2, together with functional assays, which suggest that ligand‐mediated coupling of membrane recognition and Notch binding is likely to be critical in establishing the optimal context for Notch signalling. Comparisons between the Jagged and Delta family show a huge diversity in the structures of the loops at the apex of the C2 domain implicated in membrane recognition and Jagged1 missense mutations, which affect these loops and are associated with extrahepatic biliary atresia, lead to a loss of membrane recognition, but do not alter Notch binding. Taken together, these data suggest that C2 domain binding to membranes is an important element in tuning ligand‐dependent Notch signalling in different physiological contexts.  相似文献   

9.
The position of paramyosin in insect flight muscle was determined by labelling myofibrils with antibody to paramyosin and examining them by fluorescent and electron microscopy.Antiserum to dung beetle paramyosin had antibodies to another protein as well as to paramyosin. Specific anti-paramyosin bound to the H-zone of Lethocerus myofibrils showing paramyosin was exposed only in that region. Antibodies to the other protein bound at the ends of the A-band.The exposure of antigenic sites in the two regions of the myofibril depended on the extent of contraction in the myofibril: the sites at the end of the A-band were most exposed in rest-length myofibrils and those at the H-zone in shortened ones.Antibody-labelling in stretched bee muscle showed that the protein at the ends of the sarcomere extended from myosin filaments to Z-line.The high resting elasticity of insect flight muscle and hence its capacity for oscillatory contraction may be due to the protein between myosin filaments and Z-line.  相似文献   

10.
11.
12.
The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln(ΔC44)). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln(ΔC44) line compared with control, a transgenic flightin-null rescued line (fln(+)). fln(ΔC44) fibers produced roughly 1/3 the oscillatory work and power of fln(+), with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln(ΔC44) fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln(ΔC44) flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.  相似文献   

13.
We have used a combination of classical genetic, molecular genetic, histological, biochemical, and biophysical techniques to identify and characterize a null mutation of the myosin light chain-2 (MLC-2) locus of Drosophila melanogaster. Mlc2E38 is a null mutation of the MLC-2 gene resulting from a nonsense mutation at the tenth codon position. Mlc2E38 confers dominant flightless behavior that is associated with reduced wing beat frequency. Mlc2E38 heterozygotes exhibit a 50% reduction of MLC-2 mRNA concentration in adult thoracic musculature, which results in a commensurate reduction of MLC-2 protein in the indirect flight muscles. Indirect flight muscle myofibrils from Mlc2E38 heterozygotes are aberrant, exhibiting myofilaments in disarray at the periphery. Calcium-activated Triton X-100-treated single fiber segments exhibit slower contraction kinetics than wild type. Introduction of a transformed copy of the wild type MLC-2 gene rescues the dominant flightless behavior of Mlc2E38 heterozygotes. Wing beat frequency and single fiber contraction kinetics of a representative rescued line are not significantly different from those of wild type. Together, these results indicate that wild type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function. Furthermore, these results suggest that the reduced wing beat frequency and possibly the flightless behavior conferred by Mlc2E38 is due in part to slower contraction kinetics of sarcomeric regions devoid or partly deficient in MLC-2.  相似文献   

14.
Tice LW 《Tissue & cell》1969,1(1):97-101
Lead phosphate precipitates were produced in indirect flight muscles of Phormia regina by sequential incubation in solutions containing lead and inorganic phosphate and their distribution was compared with those produced by ATP hydrolysis in the presence of lead. Enzymatically produced precipitates were associated almost exclusively with thick filaments. Non-enzymatically produced precipitates were associated with thick filaments but were also found associated with thin filaments in significant numbers.  相似文献   

15.
The control of expression of the Drosophila melanogaster tropomyosin I (TmI) gene has been investigated by P-element transformation and rescue of the flightless and jumpless TmI mutant strain, Ifm(3)3. To localize cis-acting DNA sequences that control TmI gene expression, Ifm(3)3 flies were transformed with P-element plasmids containing various deletions and rearrangements of the TmI gene. The effects of these mutations on TmI gene expression were studied by analyzing both the extent of rescue of the Ifm(3)3 mutant phenotypes and determining TmI RNA levels in the transformed flies by primer extension analysis. The results of our analysis indicate that a region located within intron 1 of the gene is necessary and sufficient for directing muscle-specific TmI expression in the adult fly. This intron region has characteristics of a muscle regulatory enhancer element that can function in conjunction with the heterologous nonmuscle hsp70 promoter to promote rescue of the mutant phenotypes and to direct expression of an hsp70-Escherichia coli lacZ reporter gene in adult muscle. The enhancer can be subdivided further into two domains of activity based on primer extension analysis of TmI mRNA levels and on the rescue of mutant phenotypes. One of the intron domains is required for expression in the indirect flight muscle of the adult. The function of the second domain is unknown, but it could regulate the level of expression or be required for expression in other muscle.  相似文献   

16.
In order to investigate the structural changes of the myofilaments involved in the phenomenon of summation in skeletal muscle contraction, we studied small-angle x-ray intensity changes during twitches of frog skeletal muscle elicited by either a single or a double stimulus at 16 °C. The separation of the pulses in the double-pulse stimulation was either 15 or 30 ms. The peak tension was more than doubled by the second stimulus. The equatorial (1,0) intensity, which decreased upon the first stimulus, further decreased with the second stimulus, indicating that more cross-bridges are formed. The meridional reflections from troponin at 1/38.5 and 1/19.2 nm− 1 were affected only slightly by the second stimulus, showing that attachment of a small number of myosin heads to actin can make a cooperative structural change. In overstretched muscle, the intensity increase of the troponin reflection in response to the second stimulus was smaller than that to the first stimulus. These results show that the summation is not due to an increased Ca binding to troponin and further suggest a highly cooperative nature of the structural changes in the thin filament that are related to the regulation of contraction.  相似文献   

17.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号