首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Twenty-five clones were randomly selected from a mature pollen cDNA library of Easter lily (Lilium longiflorum Thunb.) in order to study the abundance of pollen-expressed mRNAs and the functional roles of the proteins encoded by these mRNAs. Plaque hybridization experiments were conducted to estimate indirectly the expression level of the mRNAs. Based on the hybridization frequency in the mature pollen library, the cDNA clones were divided into three abundance groups. Eight clones belonged to a high abundance class in which each cDNA clone was present in the mature lily pollen library at a frequency between 0.3 and 3%. Six of these clones were not found in cDNA libraries made from carpel, leaf, or root, suggesting that they are preferentially expressed in pollen. Fourteen clones belonged to a medium abundance class and were present in the mature pollen library at a frequency between 0.01 and 0.08%. The remaining three clones, which were present at a frequency below 0.01%, were grouped as a low abundance class. Almost all of the cDNA clones which belong to either the medium or low abundance class were also detected in the leaf library. Northern blot hybridization with three of the highly abundant cDNA clones confirmed their preferential expression in anther. In situ hybridization experiment with one of the clones showed the pollen-specific expression of the clone in mature anther. DNA sequence analysis revealed that the clone LMP131 encodes a peptide which is highly homologous to the tomato pollen-preferential gene, LAT59, which encodes a putative pectate lyase. The clone LMP134 encodes a peptide that shows an extensive similarity to a variety of thioredoxins. The third clone LMP132 encodes a 182-residue protein that has no significant homology to known sequences.  相似文献   

3.
We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms.  相似文献   

4.
5.
The cDNA for a novel Plasmodium cysteine protease (falcipain-2) has been isolated from a Plasmodium falciparum cDNA library. A 602 bp fragment was amplified from P. falciparum by PCR using degenerate oligonucleotide primers. The primers were designed based upon the amino acids flanking the active site cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteases. This fragment was used to screen a P. falciparum cDNA library and isolated a 2.1 kb clone that encoded a novel cysteine protease. The sequence of the 2.1 kb clone predicted a 56 kDa protein containing a typical signal sequence, a prosequence and a 24.7 kDa mature protease with 37% identity to falcipain-1, a hemoglobin-degrading cysteine protease of P. falciparum. Northern blot analysis detected a 2.1 kb message in trophozoites. Taken together, we have isolated a novel cysteine protease of P. falciparum, which may play an important role at the late stages of the erythrocytic cycle of the parasite.  相似文献   

6.
7.
8.
9.
A cDNA clone (Zm58.1) was isolated by differential screening from a cDNA library made to mature Zea mays pollen, and shown to be pollen-specific by RNA blot analysis. When this partial-length clone was used to probe a genomic library, a similar but distinct pollen-specific genomic clone (68% sequence identity) was isolated (Zm58.2). The putative proteins coded for by these two clones show sequence homology to several flower-expressed gene products from various plant species, including known pollen allergens from short ragweed (Ambrosia artemisiifolia), and to pectate lyases from the plant pathogenic bacteria Erwinia spp. The two genes map to different chromosomes.  相似文献   

10.
Grass pollen allergens are one of the major causes of type I allergic reactions (allergic rhinoconjunctivitis, allergic bronchial asthma, and hayfever) in temperate climates afflicting 15-20% of a genetically predisposed population. Workers have found considerable physico- and immunochemical heterogeneity within the grass pollen allergens which has made them difficult to purify for both therapeutic uses and further biochemical study. We recently reported the construction of a cDNA library in lambda gt11 using mRNA extracted from dehydrated Kentucky bluegrass (KBG, Poa pratensis). Here, we present the nucleotide and deduced amino acid sequences for three KBG pollen allergen cDNA clones, KBG 41, 60, and 31, which were isolated from the above library using a pool of six sera from grass pollen allergic patients. These clones exhibit an exceptionally high degree of sequence similarity to one another, only minor similarity to other known allergens, and no homologies to other known proteins or genes. The predicted molecular mass for the cloned proteins range from 28.3 to 37.8 kDa with pI values of 9.6-10.2. All three clones appear to possess leader peptides and lack asparagine sequons required for N-glycosylation. Therefore, the molecular mass of the post-translationally modified proteins were calculated to be 28.4-34.9 kDa, which is consistent with the size of the polypeptides revealed in Western blots of pollen proteins using an antiserum to a recombinant peptide encoded by the partial cDNA clone KBG 8.3. Northern blotting analysis indicates that expression of the genes corresponding to these clones is confined to pollen tissue. The results suggest that the clones code for a group of proteins that represent a new and previously uncharacterized group of grass pollen isoallergens, which have been hereby designated as Poa p IX.  相似文献   

11.
12.
13.
14.
This report describes the isolation and characterization of genomic and cDNA clones which define a subfamily of type I keratins in Xenopus laevis whose expression is restricted to embryonic and larval stages. The XK81 subfamily, named after the prototype cDNA clone DG81, contains four members arranged in two pairs of closely homologous loci; they were named 81A1, A2, B1, and B2. Genomic clones were obtained representing all of these regions. The A1 gene has been completely sequenced together with approximately 1 kb of flanking sequences at each end; this gene corresponds to the previously reported cDNA clone 8128 (Jonas, E., T. D. Sargent, and I. B. Dawid, 1985, Proc. Natl. Acad. Sci. USA, 82:5413-5417). The B2 gene is represented by a partial cDNA clone, DG118. Upstream sequences and about half of the coding regions have been sequenced for the B1 and B2 genes, whereas the A2 locus has been identified on the basis of hybridization data and could be a gene or pseudogene. Genomic Southern blotting indicates that all members of the subfamily have been isolated. The keratin proteins encoded by the B1 and B2 genes are 96% homologous in the central rod domain, whereas A/B gene homology in this region is 81%. During development mRNAs derived from A and B genes accumulate coordinately during gastrula and neurula stages; in the tadpole, 81A mRNA decays rapidly, whereas 81B mRNA shows a second abundance peak, persists for most of tadpole life, and decays by metamorphosis. RNAs derived from the XK81 keratin subfamily are undetectable in the adult, where different type I keratin genes are expressed.  相似文献   

15.
Leaves and bulbs of garlic ( Allium sativum L.) contain a chitinase which can be separated into three different isoforms with similar molecular structure and N- terminal amino acid sequence. SDS-PAGE of the alkylated chitinase revealed two distinct polypeptides of 32 and 33 kDa. Induction studies of the chitinase in leaves of garlic plants indicated that not only treatment with ethephon or salicylate and wounding but also a temperature shock strongly increased the enzyme level.
cDNA libraries constructed from poly(A)-rich RNA isolated from young garlic shoots and bulbs were screened for chitinase clones using the cDNA clone CCH4 encoding a basic potato chitinase as a probe. Two different cDNA clones (designated CHITAS 1 and CHITAS 2)of ca 1 000 bp were isolated and their sequences analyzed. The amino acid sequences deduced from both cDNA clones were homologous though not identical to the N-terminal sequences of the mature chitinases. Although both clones encode highly homologous chitinases their sequences definitely differ in that they have different signal peptides and one of them contains a glycine-rich domain. The garlic chitinases are apparently translated from an mRNA of 1200 nucleotides which encodes a proprotein of approximately 32 or 33 kDa for CHITAS 1 and CHITAS 2, respectively. Co-translational removal of the signal peptide will result in a 30 (for CHITAS 1) or 31 kDa (for CHITAS 2) protein with an isoelectric point of 4. 94 (for CHITAS 1) or 6. 12 (for CHITAS 2). Garlic chitinases are encoded by a small gene family as shown by Southern blot analysis of genomic DNA isolated from garlic.
The garlic chitinases show a high degree of sequence homology to the previously isolated chitinases from dicotyledonous as well as monocotyledonous species, indicating that these proteins have been conserved from an evolutionary point of view.  相似文献   

16.
17.
18.
Pollen germination and pollen tube elongation are important for pollination and fertilization in higher plants. To date, several pollen-specific genes have been isolated and characterized. However, there is little information about the precise spatial and temporal expression pattern of pollen-specific genes in higher plants. In our previous study, we identified 132 anther-specific genes in the model legume Lotus japonicus by using cDNA microarray analysis, though their precise expression sites in the anther tissues were not determined. In this study, by using in situ hybridization experiments, we determined the spatial and temporal expression sites of 46 anther-specific genes (ca. 35%), which were derived from two groups, cluster I-a and cluster II-a, according to flower developmental stages. In the case of the genes grouped into cluster I-a, thirteen clones were characterized. The specific hybridized signals were varied among the clones, and were observed in tapetum cells, microspores, and anther walls at the early developmental stage of anther tissues. In the case of the genes classified into cluster II-a, we used thirty three different cDNA clones encoding primary and secondary metabolism-related proteins, cell wall reconstruction-related proteins, actin reorganization-related proteins, and sugar transport-related proteins, etc., as a probe. Interestingly, all genes in these thirty three clones examined were specifically expressed in the bicellular pollen grains, though the signal intensity was varied among clones. From the data of the cluster II-a genes, the mRNAs related to pollen germination and pollen tube elongation were specifically transcribed and preserved in mature pollen grains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号