首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
K Nishi  M Müller    J Schnier 《Journal of bacteriology》1987,169(10):4854-4856
Temperature-resistant pseudorevertants of the temperature-sensitive Escherichia coli mutant KNS19, harboring a mutation in rplX, the gene for ribosomal protein L24, were isolated, cloned, and sequenced. The codon GAC for the amino acid Asp in the temperature-sensitive mutant corresponding to position 84 in the protein chain mutated either back to the wild type (Gly) or to codons for the amino acids Tyr and Glu. Furthermore, rplX genes from two other mutants with an altered protein L24 were cloned and sequenced. The mutations were localized at position 56 (Gly to Asp) and at position 62 (Glu to Lys) in the rplX gene. The latter two mutants lacked a conditional lethal phenotype. The results suggest that the amino acid Gly at positions 56 and 84 in the protein might be involved in loop formations.  相似文献   

3.
Summary The complete DNA sequence of theMicrococcus luteus spectinomycin (spc) operon and its adjacent regions has been determined. The sequence has revealed the presence of genes that are homologous to those of theEscherichia coli ribosomal and related proteins, L14, L24, L5, S8, L6, L18, S5, L30, L15, and secretion protein Y (secY), and the gene for adenylate kinase (adk). The gene arrangement in the spc operon is essentially the same as that ofE. coli except for the absence in theM. luteus spc operon of the genes for S14 and X protein that exist in theE. coli spc operon.SecY andadk seem to be composed of another operon (adk operon) with at least an open reading frame. The deduced amino acid sequences for these ribosomal proteins are well conserved among the two species (40–65% identity). Reflecting the high genomic guanine and cytosine (GC) content ofM. luteus (74%), the codon usage of the genes is extremely biased toward use of G and C, about 94% of the codon third positions being G or C. Seven codons, AUA, AAA, AGA, UUA, GUA, CUA, and CAA, all of which have A at the codon third positions, are completely absent in theM. luteus genes examined. Out of 11 genes in theM. luteus spc and adk operons, 5 (10) use GUG (UGA) and 6 (1) use AUG (UAA) as an initiation (termination) codon.  相似文献   

4.
Analysis of the spc ribosomal protein operon of Thermus aquaticus   总被引:5,自引:0,他引:5  
The gene region of Thermus aquaticus corresponding to the distal portion of the S10 operon and to the 5'-portion of the Escherichia coli spc operon was cloned, using the E. coli gene for the ribosomal protein L5 as hybridization probe. The gene arrangement was found to be identical to E. coli, i.e. S17, L14, L24, L5, S14, S8 and L6. Stop and start regions of contiguous cistrons overlap, except for the S14-S8 intergenic region, whose size (67 bases) even exceeds the corresponding spacer regions in E. coli and Bacillus subtilis. A G + C content of 94% in third positions of codons was found in the ribosomal protein genes of T. aquaticus analyzed here. The stop codon of gene S17 (the last gene of the S10 operon in E. coli) and the start codon of gene L14 (the first gene of the spc operon in E. coli) overlap in T. aquaticus, thus leaving no space to accommodate an intergenic promoter preceding spc-operon-encoded genes in T. aquaticus. A possible promoter, localized within the S17 coding region, yielded only weak resistance (20 micrograms/ml) to chloramphenicol in E. coli and therefore could be largely excluded as the main promoter for spc-operon-encoded genes. We failed to detect a structure resembling the protein S8 translational repressor site, located at the beginning of the L5 gene in E. coli, in the corresponding region or any other region in the cloned T. aquaticus spc DNA.  相似文献   

5.
6.
K Nishi  J Schnier 《The EMBO journal》1986,5(6):1373-1376
A temperature-sensitive mutant with an altered ribosomal protein L24 was analysed. Revertant analysis showed that the temperature-sensitive growth was correlated with the altered protein. A DNA segment containing the mutant rplX gene was cloned and sequenced. The GGC codon for glycine at the amino acid position 84 of the protein was found to be altered to a GAC codon for aspartic acid. By transforming the rplX mutant with a plasmid carrying the rrnB operon and by selecting for temperature-resistant transformants we obtained two spontaneous suppressor mutants in the gene for 23S rRNA. DNA sequence analysis of the region corresponding to the 5' end of the 23S rRNA showed a C to T alteration at position 33 in both mutants and an additional A to G alteration at position 466 in one of them. The results suggest intimate interaction of protein L24 and the 5' end of 23S rRNA in vivo and support a secondary structure model of the 23S rRNA which brings these mutational points into a close contact.  相似文献   

7.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

8.
The genes for nine ribosomal proteins, L24, L5, S14, S8, L6, L18, S5, L30, and L15, have been isolated and sequenced from the spc operon in the archaeon (Crenarchaeota) Sulfolobus acidocaldarius, and the putative amino acid sequence of the proteins coded by these genes has been determined. In addition, three other genes in the spc operon, coding for ribosomal proteins S4E, L32E, and L19E (equivalent to rat ribosomal proteins S4, L32, and L19), were sequenced and the structure of the putative proteins was determined. The order of the ribosomal protein genes in the spc operon of the Crenarchaeota kingdom of Archaea is identical to that present in the Euryarchaeota kingdom of Archaea and also identical to that found in bacteria, except for the genes for r-proteins S4E, L32E, and L19E, which are absent in bacteria. Although AUG is the initiation codon in most of the spc genes, GUG (val) and UUG (leu) are also used as initiation codons in S. acidocaldarius. Over 70% of the codons in the Sulfolobus spc operon have A or U in the third position, reflecting the low GC content of Sulfolobus DNA. Phylogenetic analysis indicated that the archaeal r-proteins are a sister group of their eucaryotic counterparts but did not resolve the question of whether the Archaea is monophyletic, as suggested by the L6P, L15P, and L18P trees, or the question of whether the Crenarchaeota is separate from the Euryarchaeota and closer to the Eucarya, as suggested by the S8P, S5P, and L24P trees. In the case of the three Sulfolobus r-proteins that do not have a counterpart in the bacterial ribosome (S4E, L32E, and L19E), the archaeal r-proteins showed substantial identity to their eucaryotic equivalents, but in all cases the archaeal proteins formed a separate group from the eucaryotic proteins.  相似文献   

9.
K Ito  M Wittekind  M Nomura  K Shiba  T Yura  A Miura  H Nashimoto 《Cell》1983,32(3):789-797
A temperature-sensitive E. coli mutant with a mutation in the spc ribosomal protein operon was found to have a conditional defect in the processing of precursor proteins destined for the periplasmic space or the outer membrane. At high temperatures, significant amounts of precursor proteins having unprocessed signal sequences are detected in the mutant cell by pulse-labeling. The precursors are processed at very slow rates during a subsequent chase. Genetic analysis indicates that the mutation impairs the function of a gene, termed secY, located at the promoter-distal part of the spc operon. The secY gene is distinct from those genes previously known to specify ribosomal proteins, yet it is within the spc operon. It is suggested that the product of the secY gene is a component of the cellular apparatus that is essential for protein secretion across the cytoplasmic membrane. The gene secY is probably identical with prlA, previously identified as a suppressor of signal sequence mutations.  相似文献   

10.
Summary A suppressor mutation of a temperature-sensitive mutant of ribosomal protein L24 (rplX19) was mapped close to the lon gene by genetic analysis and was shown to affect protease LA. The degradation and the synthesis rates of individual ribosomal proteins were determined. Proteins L24, L14, L15 and L27 were found to be degraded faster in the original rplX19 mutant than in the rplX19 mutant containing the suppressor mutation. Other ribosomal proteins were either weakly or not at all degraded in both mutants. Temperature-sensitive growth was also suppressed by the overproduction of mutant protein L24 from a plasmid. Our results suggest that (1) either free ribosomal proteins or proteins bound to abortive assembly precursors are highly susceptible to the lon gene product and (2) the mutationally altered protein L24 can still function at the nonpermissive growth temperature of the mutant, if it is present in sufficient amounts.  相似文献   

11.
We have previously described a temperature-sensitive mutant, ts215, which is defective in protein secretion. Complementation studies indicated that the mutation was located at the distal part of the spc ribosomal protein operon and the gene secY is required for efficient protein secretion. We now report a more complete genetic and biochemical analysis of the ts215 mutant. These studies revealed that the ts215 mutant has an amber mutation in the gene rp10 for ribosomal protein L15, which is located upstream and adjacent to secY. The amber mutation exerts a polar effect on secY causing a defect in protein secretion. These conclusions were supported by the following observations. The mutant strain carries a phi 80 prophage containing a temperature-sensitive suppressor, supFts6. The strain contains decreased amounts of L15 and is suppressible by a temperature-independent nonsense suppressor. In addition, L15 contains an extra tyrosine residue when suppressed by supF. DNA sequence analysis revealed the presence of a single base change in rp10 resulting in an amber codon at the 38th codon of L15. The mutant phenotype is complemented by a plasmid carrying only the secY gene under lac promoter control. The mutant cells complemented by secY can grow and synthesize proteins at normal rates and abundances at 42 degrees C, despite the fact that their ribosomes contain barely detectable levels of L15. These results indicate that ribosomal protein L15 is dispensable for protein synthesis and cell growth. In contrast, the decreased level of expression of the secY gene leads to defective protein secretion and defective cell growth.  相似文献   

12.
The half-life of ribosomal protein operon L11 mRNA in vivo was measured during exponential growth by following the kinetics of incorporation of radioactive precursors into L11 mRNA transcribed from multi-copy plasmids. The degree of translational feedback regulation by L1, the L11 operon-specific translational repressor protein, was changed by altering the site on the "L11 mRNA" where L1 interacts. The half-life of the overproduced L11 mRNA increased by about fivefold when translational repression was abolished, while the half-life of mRNA from the spc ribosomal protein operon, which is not translationally regulated by L1, stayed constant. Furthermore, the half-life of L11 operon mRNA carrying an additional mutation in the ribosome binding site that abolishes translation remains short. This indicates that the change in half-life observed during increased gene dosage is due to translational repression by L1 and is probably a consequence of L1 blocking translation of L11 mRNA and not due to some nucleolytic activity mediated by L1.  相似文献   

13.
14.
15.
16.
Using ColE1-TnA hybrid plasmid RSF2124 as the cloning vector, we constructed a hybrid plasmid, pNO1001, which carried seven ribosomal protein (r-protein) genes in the spc operon together with their promoter. The plasmid also carried three r-protein genes which precede the spc operon, but did not carry the bacterial promoter for these genes. Expression of r-protein genes carried by pNO1001 was studied by measuring messenger ribonucleic acid and r-protein synthesis in cells carrying the plasmid. It was found that the messenger ribonucleic acid for all the promoter-distal r-protein genes was synthesized in large excess relative to messenger ribonucleic acid from other chromosomal r-protein genes which are not carried by the plasmid. However, only the two promoter-proximal r-proteins, L14 and L24, were markedly overproduced. The absence of large gene dosage effects on the synthesis of other distal proteins appeared to be due, at least in part, to preferential inactivation and/or degradation of the distal message which codes for these proteins; in addition, some preferential inhibition of translation of the distal message might also have been involved. Overproduced L14 and L24 were found to be degraded in recA+ strains at both 30 and 42 degrees C; in recA strains, the degradation took place at 42 degrees C but was very slow or absent at 30 degrees C. The recA strains carrying pNO1001 failed to form colonies at 30 degrees C, presumably because of overaccumulation of r-proteins. The results suggest that degradation of excess r-proteins is an important physiological process.  相似文献   

17.
18.
19.
20.
It has been previously shown that ribosomal protein synthesis in Escherichia coli is regulated at the level of translation by certain key ribosomal proteins. In the spc operon, S8 regulates the expression of L5 and some of the subsequent genes, while the first two genes (L14 and L24) are regulated independently. We therefore determined the DNA sequence at the junction of the L24 and L5 genes, which corresponds to the putative feedback target for S8. We show that there is a striking homology between the structure of the mRNA for this region and the known binding site for S8 on 16S rRNA. These results support the theory that the regulation of ribosomal protein synthesis is based on competition between rRNA and mRNA for regulatory ribosomal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号