共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous missense mutations in the rplX gene for ribosomal protein L24 from Escherichia coli. 总被引:1,自引:1,他引:1
下载免费PDF全文

Temperature-resistant pseudorevertants of the temperature-sensitive Escherichia coli mutant KNS19, harboring a mutation in rplX, the gene for ribosomal protein L24, were isolated, cloned, and sequenced. The codon GAC for the amino acid Asp in the temperature-sensitive mutant corresponding to position 84 in the protein chain mutated either back to the wild type (Gly) or to codons for the amino acids Tyr and Glu. Furthermore, rplX genes from two other mutants with an altered protein L24 were cloned and sequenced. The mutations were localized at position 56 (Gly to Asp) and at position 62 (Glu to Lys) in the rplX gene. The latter two mutants lacked a conditional lethal phenotype. The results suggest that the amino acid Gly at positions 56 and 84 in the protein might be involved in loop formations. 相似文献
2.
Summary A suppressor mutation of a temperature-sensitive mutant of ribosomal protein L24 (rplX19) was mapped close to the lon gene by genetic analysis and was shown to affect protease LA. The degradation and the synthesis rates of individual ribosomal proteins were determined. Proteins L24, L14, L15 and L27 were found to be degraded faster in the original rplX19 mutant than in the rplX19 mutant containing the suppressor mutation. Other ribosomal proteins were either weakly or not at all degraded in both mutants. Temperature-sensitive growth was also suppressed by the overproduction of mutant protein L24 from a plasmid. Our results suggest that (1) either free ribosomal proteins or proteins bound to abortive assembly precursors are highly susceptible to the lon gene product and (2) the mutationally altered protein L24 can still function at the nonpermissive growth temperature of the mutant, if it is present in sufficient amounts. 相似文献
3.
A temperature-sensitive mutant in the gene rplX for ribosomal protein L24 and its suppression by spontaneous mutations in a 23S rRNA gene of Escherichia coli. 总被引:2,自引:0,他引:2
下载免费PDF全文

A temperature-sensitive mutant with an altered ribosomal protein L24 was analysed. Revertant analysis showed that the temperature-sensitive growth was correlated with the altered protein. A DNA segment containing the mutant rplX gene was cloned and sequenced. The GGC codon for glycine at the amino acid position 84 of the protein was found to be altered to a GAC codon for aspartic acid. By transforming the rplX mutant with a plasmid carrying the rrnB operon and by selecting for temperature-resistant transformants we obtained two spontaneous suppressor mutants in the gene for 23S rRNA. DNA sequence analysis of the region corresponding to the 5' end of the 23S rRNA showed a C to T alteration at position 33 in both mutants and an additional A to G alteration at position 466 in one of them. The results suggest intimate interaction of protein L24 and the 5' end of 23S rRNA in vivo and support a secondary structure model of the 23S rRNA which brings these mutational points into a close contact. 相似文献
4.
Incubation of 50 S subunits with 4.2 M LiCl leads to 4.2c cores and the complementary split protein fraction SP4.2, the latter containing quantitatively L24. L24 was removed from the split fraction by means of CM-cellulose chromatography. Partial and total reconstitution experiments performed with this protein preparation in the absence and presence of L24 demonstrate the crucial role of L24 in the early stage of assembly. However, this protein is dispensable for the subsequent steps of the in vitro assembly. 50 S subunits lacking L24 are fully active in the translation of artificial (poly(U)) and natural (R17 RNA) mRNA, indicating that L24 is not involved in any function of protein synthesis of the mature ribosome. It is therefore a mere assembly protein. 相似文献
5.
Albert Herzog Makoto Yaguchi Teresa Cabezón Maria-Clara Corchuelo Jean Petre Alex Bollen 《Molecular & general genetics : MGG》1979,171(1):15-22
Summary The conditionally lethal mutation, 286lmis, has been mapped inside the ribosomal protein gene cluster at 72 minutes on the Escherichia coli chromosome and was found to cotransduce at 97% with rpsE (S5). The 2861mis mutation leads to thermosensitivity and impaired assembly in vivo of 30S ribosomal particles at 42°C. The strain carrying the mutation has an altered S17 ribosomal protein; the mutational alteration involves a replacement of serine by phenylalanine in protein S17. Spontaneous reversion to temperature independence can restore the normal assembly in vivo of 30S ribosomal subunits at 42°C and the normal chromatographical sehaviour of the S17 ribosomal protein in vitro. We conclude therefore that the 2861mis mutation affects the structural gene for protein S17 (rpsQ). 相似文献
6.
The primary structure of protein L21 from the 50S subunit of Escherichia coli ribosomes has been completely determined by sequencing the peptides obtained by digestion of L21 with trypsin before and after modification of the arginine residues with 1,2-cyclohexanedione, Staphylococcus aureus protease, thermolysin, and pepsin. Automated Edman degradation using a liquid-phase sequenator was carried out on the intact protein as well as on a fragment arising from cleavage with cyanogen bromide. Protein L21 consists of a single polypeptide chain of 103 amino acids of molecular weight 11 565. An estimation of the secondary structure of protein L21 and a comparison with other E. coli ribosomal protein sequences are presented. 相似文献
7.
8.
Summary Ribosomal protein S1 from a newly isolated Escherichia coli mutant has a molecular weight of about 54,000 which is smaller than the wild type S1 (M.W. 65,000). The isoelectric points of the smaller and the wild type S1 species are similar in the gel electrophoresis system of O'Farrell (1975). Genetic analyses by Hfr conjugation and P1 phage transduction indicate that the mutation affecting S1 (rpsA) is located close to the serC gene [20 min on the E. coli genetic map of Bachmann et al. (1976)], with a co-transduction frequency of 61%. The most probable gene order is serC-rpsA-cmlB. 相似文献
9.
Ono Mayumi Kuwano Michihiko Mizushima Shoji 《Molecular genetics and genomics : MGG》1979,170(1):11-23
Molecular Genetics and Genomics - Ribosomal protein S1 from a newly isolated Escherichia coli mutant has a molecular weight of about 54,000 which is smaller than the wild type S1 (M.W. 65,000). The... 相似文献
10.
11.
K.B. McElwain J.E. Boynton N.W. Gillham 《Molecular genetics and genomics : MGG》1993,241(5-6):564-572
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11. 相似文献
12.
Chloramphenicol resistance mutation in Escherichia coli which maps in the major ribosomal protein gene cluster.
下载免费PDF全文

Localized mutagenesis and selection for streptomycin resistance were utilized to isolate a chloramphenicol resistance mutation in Escherichia coli K-12 linked to the strA (rpsL) locus. Bacteriophage P1 transduction verified the map position of the new resistance mutation at 72 min, placing it within a dense cluster of ribosomal protein genes. The map position differs from that of known cmlA and cmlB mutations, which map at 18 and 21 min, respectively. Ribosomes prepared from chloramphenicol-resistant and -sensitive isogenic transductants were analyzed in vitro for activity in formation of N-formylmethionyl-puromycin, polyphenylalanine, and polylysine in the presence of inhibitory concentrations of chloramphenicol. Comparisons were also made of 14C-chloramphenicol binding to 70S ribosomes and of the two-dimensional polyacrylamide gel electrophoresis pattern of ribosomal proteins from each strain. There was no detectable difference between ribosomes from sensitive and resistant strains as measured by these assays. Enzymatic modification by chloramphenicol acetyltransferase is not responsible for the observed phenotype. 相似文献
13.
Glutathione reductase from Escherichia coli: mutation, cloning and sequence analysis of the gene 总被引:4,自引:0,他引:4
R N Perham 《Biochemical Society transactions》1987,15(4):730-733
14.
T Choli 《Biochemistry international》1989,19(6):1323-1338
Protein L11 has been isolated from the large subunit of the E. coli ribosome under non-denaturing conditions and studied by proton magnetic resonance spectroscopy, limited proteolysis, and fluorescence and UV spectroscopy. The protein consists of two domains, a tightly-folded N-terminal part and a C-terminal half with an extended and loosely folded conformation. It is likely that the N-terminal domain is located on the surface of the subunit whereas the C-terminal part is buried within the ribosomal structure. The two tyrosines in the N-terminal region behave as solvent-exposed residues, in good agreement with iodination studies on L11 in situ. It appears probable that the central region of L11, in which the protease cleavages occur, plays an important part in structural and functional aspects. 相似文献
15.
16.
17.
Sixty-two point mutations were isolated in Escherichia coli by means of transduction with mutagenized phage P1. Twenty-two deletions extending into cysB but able to recombine with at least some of the point mutations were isolated on a transmissible E. coli plasmid. Mapping of the point mutations against the deletions divided the former into 16 deletion groups. Nine merodiploids were constructed in which the chromosome carried one of the three point mutations most distal to the trp operon and in which a plasmid carried one of the three point mutations most proximal to the trp operon. All of these showed a Cys-phenotype. It follows that mutations at the two extreme ends of the region belong to the same complementation group. 相似文献
18.
19.
20.
Nucleotide sequence of the alpha ribosomal protein operon of Escherichia coli. 总被引:18,自引:5,他引:18
下载免费PDF全文

D Bedwell G Davis M Gosink L Post M Nomura H Kestler J M Zengel L Lindahl 《Nucleic acids research》1985,13(11):3891-3903