首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Protease-activated receptor-2 (PAR-2) is a tethered-ligand, G-protein-coupled receptor that is activated by proteolytic cleavage or by small peptides derived from its cleaved N-terminal sequence, such as SLIGRL-NH2. To assess specific PAR activity, we developed an immortalized murine PAR-1 (-/-) cell line transfected with either human PAR-2 or PAR-1. A "directed" library of more than 100 PAR agonist peptide analogues was synthesized and evaluated for PAR-2 and PAR-1 activity to establish an in-depth structure-function profile for specific action on PAR-2. The most potent agonist peptides (EC50 = 2-4 microM) had Lys at position 6, Ala at position 4, and pFPhe at position 2; however, these also exhibited potent PAR-1 activity (EC50 = 0.05-0.35 microM). We identified SLIARK-NH2 and SL-Cha-ARL-NH2 as relatively potent, highly selective PAR-2 agonists with EC50 values of 4 microM. Position 1 did not tolerate basic, acidic, or large hydrophobic amino acids. N-Terminal capping by acetyl eliminated PAR-2 activity, although removal of the amino group reduced potency by just 4-fold. At position 2, substitution of Leu by Cha or Phe gave equivalent PAR-2 potency, but this modification also activated PAR-1, whereas Ala, Asp, Lys, or Gln abolished PAR-2 activity; at position 3, Ile and Cha were optimal, although various amino acids were tolerated; at position 4, Ala or Cha increased PAR-2 potency 2-fold, although Cha introduced PAR-1 activity; at position 5, Arg or Lys could be replaced successfully by large hydrophobic amino acids. These results with hexapeptide C-terminal amides that mimic the native PAR-2 ligand indicate structural modes for obtaining optimal PAR-2 activity, which could be useful for the design of PAR-2 antagonists.  相似文献   

2.
Protease-activated receptor-1 (PAR-1) is a G-coupled receptor activated by alpha-thrombin and other proteases. In this paper we describe the synthesis and the pharmacological evaluation of novel peptide-mimetic antagonists (compounds 1-16) characterized by the presence of new heterocyclic nuclei such as 2-methyl-indole (5- and 6-substituted) and 1,4-benzodiazepine moiety. The new derivatives, tested in order to evaluate their antagonist potency by using human platelet aggregation induced by PAR-1AP, resulted in some cases (compounds 1 and 4) more potent than the reference. The compounds, tested on aortic rings, confirmed the results obtained in the aggregation assay.  相似文献   

3.
Experimental models implicate protease activated receptors (PARs) as important sensors of the proteolytic tumor microenvironment during breast cancer development. However, the role of the major PARs, PAR-1 and PAR-2, in human breast tumors remains to be elucidated. Here, we have investigated how PAR-1 and PAR-2 protein expression correlate with established clinicopathological variables and patient outcome in a well-characterized cohort of 221 breast cancer patients. Univariable and multivariable hazard ratios (HR) were estimated by the Cox proportional hazards model, distant disease-free survival (DDFS) and overall survival by the Kaplan–Meier method, and survival in different strata was determined by the log-rank test. Associations between PARs and clinicopathological variables were analyzed using Pearson’s χ2-test. We find that PAR-2 associates with DDFS (HR = 3.1, P = 0.003), whereas no such association was found with PAR-1 (HR = 1.2, P = 0.6). Interestingly, the effect of PAR-2 was confined to the ER-positive sub-group (HR = 5.5, P = 0.003 vs. HR = 1.2 in ER-negative; P = 0.045 for differential effect), and PAR-2 was an independent prognostic factor specifically in ER-positive tumors (HR = 3.9, P = 0.045). On the contrary, PAR-1 correlated with worse prognosis specifically in the ER-negative group (HR = 2.6, P = 0.069 vs. HR = 0.5, P = 0.19 in ER-positive; P = 0.026 for differential effect). This study provides novel insight into the respective roles of PAR-1 and PAR-2 in human breast cancer and suggests a hitherto unknown association between PARs and ER signaling that warrants further investigation.  相似文献   

4.

Background

The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function.

Methodology/Principal Findings

Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host’s side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1’s extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin.

Conclusions/Significance

Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination.  相似文献   

5.
6.
The thrombin receptor (PAR-1) is activated by alpha-thrombin to stimulate various cell types, including platelets, through the tethered-ligand sequence SFLLRN. Macrocyclic peptide analogues of SFLLRN were synthesized and evaluated in vitro. In general, the compounds were much less potent in inducing platelet aggregation relative to SFLLRN-NH2 and did not act as antagonists of alpha-thrombin. Derivative 3c was the most potent macrocycle in activating PAR-1, with an EC50 of 24 microM.  相似文献   

7.
The anterior-posterior axis of C. elegans is defined by the asymmetric division of the one-cell zygote, and this is controlled by the PAR proteins, including PAR-3 and PAR-6, which form a complex at the anterior of the cell, and PAR-1, which localizes at the posterior [1-4]. PAR-1 plays a similar role in axis formation in Drosophila: the protein localizes to the posterior of the oocyte and is necessary for the localization of the posterior and germline determinants [5, 6]. PAR-1 has recently been shown to have an earlier function in oogenesis, where it is required for the maintenance of oocyte fate and the posterior localization of oocyte-specific markers [7, 8]. Here, we show that the homologs of PAR-3 (Bazooka) and PAR-6 are also required to maintain oocyte fate. Germline clones of mutants in either gene give rise to egg chambers that develop 16 nurse cells and no oocyte. Furthermore, oocyte-specific factors, such as Orb protein and the centrosomes, still localize to one cell but fail to move from the anterior to the posterior cortex. Thus, PAR-1, Bazooka, and PAR-6 are required for the earliest polarity in the oocyte, providing the first example in Drosophila where the three homologs function in the same process. Although these PAR proteins therefore seem to play a conserved role in early anterior-posterior polarity in C. elegans and Drosophila, the relationships between them are different, as the localization of PAR-1 does not require Bazooka or PAR-6 in Drosophila, as it does in the worm.  相似文献   

8.
Activated factor X (FXa) exerts coagulation-independent actions such as proliferation of vascular smooth muscle cells (SMCs) through the protease-activated receptors PAR-1 and PAR-2. Both receptors are upregulated upon vascular injury but the underlying mechanisms have not been defined. We examined if FXa regulates PAR-1 and PAR-2 in human vascular SMCs. FXa increased PAR-2 mRNA, protein, and cell-surface expression and augmented PAR-2-mediated mitogenesis. PAR-1 was not influenced. The regulatory action of FXa on PAR-2 was concentration-dependent and mimicked by a PAR-2-selective activating peptide. PAR-2 regulation was not influenced by the thrombin inhibitor argatroban or PAR-1 siRNA. FXa increased dichlorofluorescein diacetate fluorescence and 8-isoprostane formation and induced expression of the NADPH oxidase subunit NOX-1. NOX-1 siRNA prevented FXa-stimulated PAR-2 regulation, as did ebselen and cell-permeative and impermeative forms of catalase. Exogenous H2O2 increased PAR-2 expression and mitogenic activity. FXa promoted nuclear translocation and PAR-2/DNA binding of nuclear factor κB (NF-κB); NF-κB inhibition prevented PAR-2 regulation by FXa. FXa also promoted PAR-2 mRNA stabilization through increased human antigen R (HuR)/PAR-2 mRNA binding and cytoplasmic shuttling. HuR siRNA abolished FXa-stimulated PAR-2 expression. Thus FXa induces functional expression of PAR-2 but not of PAR-1 in human SMCs, independent of thrombin formation, via a mechanism involving NOX-1-containing NADPH oxidase, H2O2, NF-κB, and HuR.  相似文献   

9.
10.

Background

This study investigated whether lipopolysaccharide (LPS) increase protease-activated receptor-2 (PAR-2) expression and enhance the association between PAR-2 expression and chemokine production in human vascular endothelial cells (ECs).

Methods

The morphology of ECs was observed through microphotography in cultured human umbilical vein ECs (EA. hy926 cells) treated with various LPS concentrations (0, 0.25, 0.5, 1, and 2 μg/mL) for 24 h, and cell viability was assessed using the MTT assay. Intracellular calcium imaging was performed to assess agonist (trypsin)-induced PAR-2 activity. Western blotting was used to explore the LPS-mediated signal transduction pathway and the expression of PAR-2 and adhesion molecule monocyte chemoattractant protein-1 (MCP-1) in ECs.

Results

Trypsin stimulation increased intracellular calcium release in ECs. The calcium influx was augmented in cells pretreated with a high LPS concentration (1 μg/mL). After 24 h treatment of LPS, no changes in ECs viability or morphology were observed. Western blotting revealed that LPS increased PAR-2 expression and enhanced trypsin-induced extracellular signal-regulated kinase (ERK)/p38 phosphorylation and MCP-1 secretion. However, pretreatment with selective ERK (PD98059), p38 mitogen-activated protein kinase (MAPK) (SB203580) inhibitors, and the selective PAR-2 antagonist (FSLLRY-NH2) blocked the effects of LPS-activated PAR-2 on MCP-1 secretion.

Conclusions

Our findings provide the first evidence that the bacterial endotoxin LPS potentiates calcium mobilization and ERK/p38 MAPK pathway activation and leads to the secretion of the pro-inflammatory chemokine MCP-1 by inducing PAR-2 expression and its associated activity in vascular ECs. Therefore, PAR-2 exerts vascular inflammatory effects and plays an important role in bacterial infection-induced pathological responses.
  相似文献   

11.
Protease-activated receptor-2 (PAR-2) is abundantly expressed in gastric mucosal chief cells, facilitating pepsinogen secretion. In the present study, we investigated whether PAR-1, a thrombin receptor, could modulate pepsinogen secretion in rats. The PAR-1-activating peptide TFLLR-NH(2) as well as the PAR-2-activating peptide SLIGRL-NH(2), administered i.v. repeatedly at 1-h intervals, significantly increased gastric pepsinogen secretion over 2-4 h (after two to four doses). In contrast, the control peptide FTLLR-NH(2), given in the same manner, had no such effect. Thus, PAR-1, like PAR-2, might function to facilitate pepsinogen secretion, suggesting a novel role of the thrombin-PAR-1-pathway in the stomach.  相似文献   

12.
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.  相似文献   

13.
Proteinase-activated receptor 1 (PAR-1) is a G protein-coupled receptor that is activated by thrombin and is implicated in the pathogenesis of inflammation. Although PAR-1 is expressed on immunocompetent cells within the brain such as astrocytes, little is known about its role in the pathogenesis of inflammatory brain diseases. Herein, we investigated PAR-1 regulation of brain inflammation by stimulating human astrocytic cells with thrombin or the selective PAR-1-activating peptide. Activated cells expressed significantly increased levels of IL-1 beta, inducible NO synthase, and PAR-1 mRNA. Moreover, supernatants of these same cells were neurotoxic, which was inhibited by an N-methyl-D-aspartate receptor antagonist. Striatal implantation of the PAR-1-activating peptide significantly induced brain inflammation and neurobehavioral deficits in mice compared with mice implanted with the control peptide or saline. Since HIV-related neurological disease is predicated on brain inflammation and neuronal injury, the expression of PAR-1 in HIV encephalitis (HIVE) was investigated. Immunohistochemical analysis revealed that PAR-1 and (pro)-thrombin protein expression was low in control brains, but intense immunoreactivity was observed on astrocytes in HIVE brains. Similarly, PAR-1 and thrombin mRNA levels were significantly increased in HIVE brains compared with control and multiple sclerosis brains. These data indicated that activation and up-regulation of PAR-1 probably contribute to brain inflammation and neuronal damage during HIV-1 infection, thus providing new therapeutic targets for the treatment of HIV-related neurodegeneration.  相似文献   

14.
15.
The structure-activity relationship (SAR) of the vinyl pyridine region of himbacine derived thrombin receptor (PAR-1) antagonists is described. A 2-vinylpyridyl ring substituted with an aryl or a heteroaryl group at the 5-position showed the best overall PAR-1 affinity and pharmacokinetic properties. One of the newly discovered analogs bearing a 5-(3-pyridyl) substituent showed excellent PAR-1 affinity (Ki = 22 nM) and oral activity with reduced ClogP and improved off-target selectivity compared to an earlier development candidate.  相似文献   

16.
Activation of both PAR-1 (proteinase-activated receptor-1) and PAR-2 resulted in release of the chemokine GRO (growth-regulated oncogene)/CINC-1 (cytokine-induced neutrophil chemoattractant-1), a functional counterpart of human interleukin-8, from rat astrocytes. Here, we investigate whether the two PAR receptor subtypes can signal separately. PAR-2-induced GRO/CINC-1 release was independent of protein kinase C, phosphoinositide 3-kinase and MEK (mitogen-activated protein kinase kinase)-1/2 activation, whereas these three kinases were involved in PAR-1-induced GRO/CINC-1 release. Despite such clear differences between PAR-1 and PAR-2 signalling pathways, JNK (c-Jun N-terminal kinase) was identified in both signalling pathways to play a pivotal role. By isoform-specific loss-of-function studies using small interfering RNA against JNK1-3, we demonstrate that different JNK isoforms mediated GRO/CINC-1 secretion, when it was induced by either PAR-1 or PAR-2 activation. JNK2 and JNK3 isoforms were both activated by PAR-1 and essential for chemokine GRO/CINC-1 secretion, whereas PAR-1-mediated JNK1 activation was mainly responsible for c-Jun phosphorylation, which was not involved in GRO/CINC-1 release. In contrast, PAR-2-induced JNK1 activation, which failed to phosphorylate c-Jun, uniquely contributed to GRO/CINC-1 release. Therefore our results show for the first time that JNK-mediated chemokine GRO/CINC-1 release occurred in a JNK isoform-dependent fashion and invoked PAR subtype-specific mechanisms. Furthermore, here we demonstrate that activation of PAR-2, as well as PAR-1, rescued astrocytes from ceramide-induced apoptosis via regulating chemokine GRO/CINC-1 release. Taken together, our results suggest that PAR-1 and PAR-2 have overlapping functions, but can activate separate pathways under certain pathological conditions to rescue neural cells from cell death. This provides new functional insights into PAR/JNK signalling and the protective actions of PARs in brain.  相似文献   

17.
18.
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE(2) production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 microM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE(2) from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca(2+) ion shutoff was approximately 2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung.  相似文献   

19.
Thrombin exerts a number of effects on skeletal myoblasts in vitro. It stimulates proliferation and intracellular calcium mobilization and inhibits differentiation and apoptosis induced by serum deprivation in these cells. Many cellular responses to thrombin are mediated by protease-activated receptor-1 (PAR-1). Expression of PAR-1 is present in mononuclear myoblasts in vitro, but repressed when fusion occurs to form myotubes. In the current study, we used PAR-1-null mice to determine which of thrombin's effects on myoblasts are mediated by PAR-1. Thrombin inhibited fusion almost as effectively in cultures prepared from the muscle of PAR-1-null myoblasts as in cultures prepared from wild-type mice. Apoptosis was inhibited as effectively in PAR-1-null myoblasts as in wild-type myoblasts. These effects in PAR-1-null myoblasts were mediated by a secreted inhibitor of apoptosis and fusion, as demonstrated previously for normal rat myoblasts. Thrombin failed to induce an intracellular calcium response in PAR-1-null myoblast cultures, although these cells were able to mobilize intracellular calcium in response to activation of other receptors. PAR-1-null myoblasts also failed to proliferate in response to thrombin. These results demonstrate that thrombin's effects on myoblast apoptosis and fusion are not mediated by PAR-1 and that PAR-1 is the only thrombin receptor capable of inducing proliferation and calcium mobilization in neonatal mouse myoblasts.  相似文献   

20.
Benton R  St Johnston D 《Cell》2003,115(6):691-704
PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation of the Bazooka/PAR-6/aPKC complex by blocking Bazooka oligomerization and binding to aPKC. In epithelia, this complex localizes apically and defines the apical membrane, whereas Bazooka lacking PAR-1 phosphorylation/14-3-3 binding sites forms ectopic lateral complexes. Lateral exclusion by PAR-1/14-3-3 cooperates with apical anchoring by Crumbs/Stardust to restrict Bazooka localization, and loss of both pathways disrupts epithelial polarity. PAR-1 also excludes Bazooka from the posterior of the oocyte, and disruption of this regulation causes anterior-posterior polarity defects. Thus, antagonism of Bazooka by PAR-1/14-3-3 may represent a general mechanism for establishing complementary cortical domains in polarized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号