首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The transfer of N-acetyl(14C)glucosamine from UDP-N-acetyl(14C)glucosamine to endogenous glycoproteins acceptors were studied comparatively in the nuclei and in the non-nuclear membranes of rat hepatocytes. Electrophoretic and autoradiographic analysis show that most of the glycoprotein acceptors of the nuclei differ from those of the non-nuclear membranes in terms of molecular weight. In addition, it may interesting to mention that in the nuclear fraction a 30% inhibition by tunicamycin is obtained for concentrations as low as 0.03 microM, whereas at this concentration no effect is detected in the non-nuclear membranes. In the presence of 0.2 microM tunicamycin, the inhibition does not go beyond 25% in the latter fraction but goes up to 80% in the former. The previous results demonstrate clearly that a particular glycosylation reaction occurs in the nucleus.  相似文献   

2.
Isolated platelet membranes synthesize mannosylretinyl phosphate and dolichylmannosyl phosphate from GDP-[14C]mannose, but only dolichylglucosyl-phosphate is synthesized from UDP-[14C]glucose. Addition of exogenous retinylphosphate specifically stimulates the biosynthesis of mannosylretinylphosphate.  相似文献   

3.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

4.
Isolated platelet membranes synthesize mannosylretinyl phosphate and dolichylmannosyl phosphate from GDP-[14C]mannose, but only dolichylglucosyl-phosphate is synthesized from UDP-[14C]glucose.Addition of exogenous retinylphosphate specifically stimulates the biosynthesis of mannosylretinylphosphate.  相似文献   

5.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

6.
Of the subcellular fractions of rat liver the endoplasmic reticulum was the most active in GDP-mannose: retinyl phosphate mannosyl-transfer activity. The synthesis of retinyl phosphate mannose reached a maximum at 20-30 min of incubation and declined at later times. Retinyl phosphate mannose and dolichyl phosphate mannose from endogenous retinyl phosphate and dolichyl phosphate could also be assayed in the endoplasmic reticulum. About 1.8 ng (5 pmol) of endogenous retinyl phosphate was mannosylated per mg of endoplasmic reticulum protein (15 min at 37 degrees C, in the presence of 5 mM-MnCl2), and about 0.15 ng (0.41 pmol) of endogenous retinyl phosphate was mannosylated with Golgi-apparatus membranes. About 20 ng (13.4 pmol) of endogenous dolichyl phosphate was mannosylated in endoplasmic reticulum and 4.5 ng (3 pmol) in Golgi apparatus under these conditions. Endoplasmic reticulum, but not Golgi-apparatus membranes, catalysed significant transfer of [14C]mannose to endogenous acceptor proteins in the presence of exogenous retinyl phosphate. Mannosylation of endogenous acceptors in the presence of exogenous dolichyl phosphate required the presence of Triton X-100 and could not be detected when dolichyl phosphate was solubilized in liposomes. Dolichyl phosphate mainly stimulated the incorporation of mannose into the lipid-oligosaccharide-containing fraction, whereas retinyl phosphate transferred mannose directly to protein.  相似文献   

7.
M H Gold  H J Hahn 《Biochemistry》1976,15(9):1808-1814
Particulate membrane preparations from Neurospora crassa incorporated mannose from GDP-[14C] mannose into endogenous lipid and particulate protein acceptors. Synthesis of the mannosyl lipid is reversible in the presence of GDP. Chemical and chromatographic characterization of the mannosyl lipid suggest that it is a mannosylphosphorylpolyisoprenol. The other endogenous acceptor was precipitated by trichloracetic acid. Gel filtration and electrophoresis studies before and after treatment with proteolytic enzymes indicate that the second acceptor is a glycoprotein(s). beta Elimination studies on the mannosyl protein formed from GDP-[14C] mannose with Mg2+ in the reaction mixture or formed from mannosyl lipid indicate thad with the peptide chain. Several lines of evidence indicate that in Neurospora crassa the mannosyl lipid is an obligatory intermediate in the in vitro mannosylation of the protein. (a) At 15 degrees C the initial formation of the mannosyl lipid is faster than the initial formation of the mannosyl protein. (b) Exogenous partially purified mannosyl lipid can function as a mannosyl donor for the synthesis of the mannosyl protein. This reaction was also dependent on a divalent metal. The rate of this reaction was optimal at a concentration of Triton X-100 which effectively inhibited the transfer of mannose from GDP-[14C] mannose to lipid and protein, indicating that GDP-mannose was not an intermediate in the transfer of mannose from lipid to protein. The mannosyl protein formed in this reaction was indistinguishable by several criteria from the mannosyl protein formed from GDP-[14C] mannose and Mg2+. (c) The effect of a chase with an excess of unlabeled GDP-mannose on the incorporation of mannose into endogenous acceptors was immediate cessation of the synthesis and subsequent turnover of the mannosyl lipid; in contrast, however, incorporation of mannose into protein continued and was proportional to the loss of mannose from the mannosyl lipid.  相似文献   

8.
The distribution of membrane-bound enzymes involved in mannan biosynthesis in plasma and mesosomal membranes of Micrococcus lysodeikticus has been investigated. Isolated mesosomal vesicles, unlike plasma membrane preparations, cannot catalyze the transfer of [14C]mannose from GDP-[14C]mannose into mannan. This appears to result from the inability of this membrane system to synthesize the carrier lipid [14C]mannosyl-1-phosphorylundecaprenol. In contrast, this is the major mannolipid synthesized from GDP-[14C]mannose by isolated plasma membranes. The possibility that substrate inaccessibility could account for the failure to detect the enzyme in isolated mesosomal vesicles appears unlikely from the lack of activity following disruption of the vesicles with ultrasound or with surface active agents. Both membrane preparations possessed the ability to catalyse the transfer of [14C]mannose from purified [14C]mannosyl-1-phosphorylundecaprenol into mannan. Furthermore, free mannan and mannan located on both unlabeled mesosomal and unlabeled plasma membranes could act as acceptors of [14C]mannosyl units from 14C-labeled carrier lipid located in prelabeled plasma membranes. The possibility that the juxtaposition of mesosomal vesicles and enveloping plasma membrane (i.e. the mesosomal sacculus) in vivo allows mannan, located on mesosomal vesicles, to accept mannosyl units from carrier lipid located in the sacculus membrane is discussed.  相似文献   

9.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

10.
Crude cell membrane fractions from a number of tissues can form acidic glycolipids. The formation of acidic galactose lipid and mannose lipid was greatly reduced in vitamin A deficiency, primarily in tissues known to be mucus-producing. Mouse mastocytoma tissue was active in forming acidic galactose lipids with UDP-galactose as substrate. One of the products was identified as retinylphosphate galactose. The synthetase reaction producing this compound exhibited an apparent pH optimum at 6.3. The presence of detergent and retinol stimulated the synthetase reaction, which exhibited an absolute requirement for Mn2+ or Mg2+. The synthetase reaction was readily reversible. Incubation of particulate enzyme with retinylphosphate galactose and UDP yielded UDP-galactose and a compound tentatively identified as retinylphosphate. The galactose lipid was isolated by column chromatography on DEAE-cellulose and silica gel. The retinylphosphate galactose was homogeneous when examined by thin layer chromatography. Mild acid hydrolysis of labeled retinylphosphate galactose yields [14C]galactose, whereas alkaline hydrolysis and hydrogenolysis produced [14C]galactose 1-phosphate. Retinylphosphate galactose bound to vitamin A-depleted, retinol-binding protein.  相似文献   

11.
A membrane fraction from Saccharomyces cerevisiae as well as a mannosyltransferase purified therefrom was shown to catalyze the transfer of mannose from GDPmannose to retinyl phosphate. The product formed has chromatographic and chemical properties characteristic for retinylphosphate mannose. The enzyme requires divalent cations. Mg2+ is more effective than Mn2+ with an optimum concentration around 25 mM. Amphomycin at a concentration of 0.1 mg/ml inhibits the reaction to 50%. Glycosyl transfer was specific for mannose residues from GDPmannose and did not occur with dolichylphosphate mannose nor with UDP galactose; UDPglucose is a poor donor. Formation of retinylphosphate mannose is inhibited by dolichyl phosphate. This observation as well as similarities between retinylphosphate mannose and dolichylphosphate mannose synthesis in respect to ion requirement, inhibition by amphomycin are suggestive that both reactions are catalyzed by one and the same enzyme. In experiments studying the glycosyl donor specificity in the assembly of lipid-linked oligosaccharide intermediates involved in N-glycosylation of proteins, it could be demonstrated that retinylphosphate mannose can replace dolichylphosphate mannose in the final steps of mannosylation.  相似文献   

12.
The distribution of membrane-bound enzymes involved in mannan biosynthesis in plasma and mesosomal membranes of Micrococcus lysodeikticus has been investigated.Isolated mesosomal vesicles, unlike plasma membrane preparations, cannot catalyze the transfer of [14C]mannose from GDP-[14C]mannose into mannan. This appears to result from the inability of this membrane system to synthesize the carrier lipid [14C]mannosyl-l-phosphorylundecaprenol. In contrast, this is the major manno-lipid synthesized from GDP-[14C]mannose by isolated plasma membranes. The possibility that substrate inaccessibility could account for the failure to detect the enzyme in isolated mesosomal vesicles appears unlikely from the lack of activity following disruption of the vesicles with ultrasound or with surface active agents.Both membrane preparations possessed the ability to catalyse the transfer of [14C]mannose from purified [14C]mannosyl-l-phosphorylundecaprenol into mannan. Furthermore, free mannan and mannan located on both unlabeled mesosomal and unlabeled plasma membranes could act as acceptors of [14C]mannosyl units from 14C-labeled carrier lipid located in prelabeled plasma membranes. The possibility that the juxtaposition of mesosomal vesicles and enveloping plasma membrane (i.e. the mesosomal sacculus) in vivo allows mannan, located on mesosomal vesicles, to accept mannosyl units from carrier lipid located in the sacculus membrane is discussed.  相似文献   

13.
The Mn-2+ dependent mannosyl transfer reaction between GDP-[14-C]mannose and dolichol phosphate, which is catalyzed by liver membranes, could not be followed accurately with the existing assay systems. Thus, GDP-[14-C]mannose is hydrolyzed rapidly by a pyrophosphatase present in microsomal and Golgi fractions from liver cells. The rate of the hydrolysis is rapid enough to limit the extent of incorporation of [14-c]mannose into endogenous acceptors. AMP was an effective inhibitor of the pyrophosphatase in Golgi membranes, and protected GDP-mannose from metabolism in alternative pathways. In the presence of AMP it was possible accurately to follow the time course of synthesis of dolichol phosphate [14-c]mannose over short time periods. Even though the time course of the reaction was measured over 2 s intervals, no linear portion could be detected in plots of product formed versus time. The kinetics of synthesis did, however, fit an equation for a first-order kinetic process. The basis for the first-order kinetics seems related to the very small amounts of dolichol phosphate in membranes. The values of the first-order rate constant is dependent on the concentrations of GDP-mannose and Mn-2+ added to the assays.  相似文献   

14.
Microsomal membrane preparations from rat livers, when incubated with labelled sugar-nucleotides, were shown to synthesize labelled oligosaccharide-lipids in the presence of excess exogenous dolichyl phosphate. Under the incubation conditions defined in the present study, dolichyl pyrophosphoryl(DolPP)GlcNAc2-Man5, DolPPGlcNAc2Man9 and DolPPGlcNAc2Man9Glc3 were the principal oligosaccharide-lipids formed by both control and vitamin A-deficient membranes. However, deficient membranes synthesized 3.2 +/- 0.8 times as much oligosaccharide-lipids and 2.6 +/- 0.7 times as much dolichyl phosphate mannose (DolPMan) and dolichyl phosphate glucose (DolPGlc) as the controls. The transfer of the oligosaccharide chain from the dolichol carrier to the endogenous protein acceptors in vitamin A-deficient microsomes (microsomal fractions) was only 57.5 +/- 9.5% of that of controls. After endo-beta-N-acetylglucosaminidase treatment, only one oligosaccharide species was isolated from both control and vitamin A-deficient microsomal glycoproteins, and was characterized as GlcNAcMan9Glc3. We conclude that the decreased incorporation of labelled mannose and glucose from sugar-nucleotides into the glycoproteins must be due to decreased transfer of GlcNAc2Man9Glc3 from the dolichol carrier to the protein acceptors. This conclusion was further substantiated by the finding that control membranes transferred 4-6 times as much labelled oligosaccharides from exogenously added dolichol-linked substrate (DolPPGlcNAc2Man9Glc3) to endogenous microsomal protein acceptors as compared with the vitamin A-deficient membranes. Attempts to reverse this defect by addition of retinol or retinyl phosphate (a source of retinyl phosphate mannose) to the incubations were unsuccessful.  相似文献   

15.
Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.  相似文献   

16.
Synthetic peptides derived from a 45-kDa glycoprotein antigen of Mycobacterium tuberculosis were shown to function as glycosyltransferase acceptors for mannose residues in a mannosyltransferase cell-free assay. The mannosyltransferase activity was localized within both isolated membranes and a P60 cell wall fraction prepared from the rapidly growing mycobacterial strain, Mycobacterium smegmatis. Incorporation of radiolabel from GDP-[(14)C]mannose was inhibited by the addition of amphomycin, indicating that the glycosyl donor for the peptide acceptors was a member of the mycobacterial polyprenol-P-mannose (PPM) family of activated glycosyl donors. Furthermore, a direct demonstration of transfer from the in situ generated PP[(14)C]Ms was also demonstrated. It was also found that the enzyme activity was sensitive to changes in overall peptide length and amino acid composition. Because glycoproteins are present on the mycobacterial cell surface and are available for interaction with host cells during infection, protein glycosyltransferases may provide novel drug targets. The development of a cell-free mannosyltransferase assay will now facilitate the cloning and biochemical characterisation of the relevant enzymes from M. tuberculosis.  相似文献   

17.
A one-step column chromatographic procedure on DEAE-Sephacel allows the separation of mannosylretinylphosphate from dolichylmannosylphosphate with minimal breakdown of the mannosylretinylphosphate. Using this procedure, subcellular fractions of rat liver were shown to be active in synthesizing both mannolipids from GDP-[14C]mannose in the absence or presence of exogenous retinylphosphate.  相似文献   

18.
The radioactive products derived from transfer of [14C]mannose residues from GDP-[14C]mannose to endogenous acceptors of a Hansenula holstii particulate enzyme preparation have been solubilized by Pronase digestion. From this soluble mixture, glycopeptides containing [14C]mannose have been purified and have been shown by β-elimination-reduction experiments to contain radioactive mannose and oligosaccharides of mannose linked to serine and threonine residues. Radioactive macromolecular complexes of mannan-protein were extracted from the particulate enzyme fraction with hot, neutral citrate buffer. These components contained variable quantities of protein, mannose, and phosphate. The more neutral components were reduced in size by Pronase digestion and yielded glycopeptides similar to those obtained by direct Pronase digestion of the particulate fraction.  相似文献   

19.
White matter membrane preparations from pig brain catalyze the transfer of [14C]mannose from exogenous [14C]mannosylphosphoryldolichol into an endogenous oligosaccharide lipid. Under the same incubation conditions label is also incorporated into endogenous membrane glycoproteins. The enzymatic labeling of both classes of endogenous acceptors is stimulated by the addition of Ca2+. Several enzymatic properties of the mannosyltransferase activity responsible for the transfer of mannose from mannosylphosphoryldolichol into the oligosaccharide lipid intermediate have been examined. The [Man-14C] oligosaccharide lipid synthesized by this in vitro system has the solubility, hydrolytic and chromatographic characteristics of a pyrophosphate-linked oligosaccharide derivative of dolichol. The free [Man-14C]oligosaccharide liberated from the carrier lipid by mild acid treatment is estimated to contain 8 glycose units. All of the [14C]mannosyl units in the [Man-14C]oligosaccharide derived from exogenous [14C]mannosylphosphoryldolichol are released as free [14C]mannose by an α-mannosi-dase. No [14C]mannose is released during incubation with a β-mannosidase. The presence of an N,N′-diacetylchitobiose unit at the reducing end of the lipid-bound [Man-14C]oligosaccharide is indicated by its susceptibility to digestion by endo-β-N-acetylglucosaminidase H. Pronase digestion of the enzymatically labeled [Man-14C]glycoprotein yields a single [Man-14C]gly-copeptide fraction on Bio-Gel P-6 that appears to be slightly larger than the free [Man-14C]oligosac-charide released from the carrier lipid by mild acid hydrolysis. The [Man-14C]glycopeptide is cleaved by endo-β-N-acetylglucosaminidase H, and the neutral [Man-14C]oligosaccharide product appears to be identical to the product formed when the lipid-bound [Man-14C]oligosaccharide is degraded by the endoglycosidase. The glycopeptide linkage in the [Man-14C]glycoprotein is stable to mild alkali treatment. These results are consistent with the dolichol-linked [Man-14C]oligosaccharide, mannosy-lated via exogenous [14C]mannosylphosphoryldoiichol, being subsequently transferred en bloc from dolichyl pyrophosphate to asparagine residues in endogenous membrane polypeptide acceptors. SDS-polyacrylamide gel electrophoresis of the [Man-14C]glycoprotein, labeled when white matter membranes are incubated with [14C]mannosylphosphoryldolichol. revealed a major labeled polypeptide with an apparent mol wt of 24,000. A minor labeled membrane glycoprotein is also seen, having an apparent mol wt of 105,000.  相似文献   

20.
Hamster liver14C-mannolipid, prepared by DEAE-cellulose chromatography of the organic extract, is shown to be a more efficient donor of mannose to endogenous glycoproteins then guanosine-diphosphate-mannose.Analysis of endogenous acceptors after proteolysis reveals that several compounds separated by DEAE-sephadex chromatography are labeled by both14C-mannolipid and GDP-mannose14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号