首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioreactor with associated crystallizer for the accumulation of a highly concentrated slurry product has been developed and investigated. The transformation of Ca-fumarate to Ca-L-malate by the action of the fumarase of immobilized Brevibacterium flavum cells focussed on the performance of this newly-devised bioreactor-crystallizer system.

The following results were obtained

(1) The fumarase reaction in the bioreactor proceeded at a rate that was first-order in apparent substrate concentration.

(2) The reaction rate increased with the addition of Na2-fumarate to the substrate solution.

(3) The reaction rate was independent of the substrate circulation rate and the initial substrate concentration in the crystallizer.

(4) Fumarase activity of immobilized B. flavum cells was stable after 10 repeated uses over a period of 10 days.

(5) Maximum concentration of the product, final conversion ratio of the substrate and the productivity of the bioreactor-crystallizer system were much higher than those for a conventional bioreactor using solubilized Ca-fumarate as a substrate.  相似文献   

2.
The following technic, based on the patent blue V hemoglobin reaction, is useful for identifying hemoglobin in tissue fixed in neutral formaldehyde solution and embedded in paraffin:

Stain the deparaffinized, hydrated sections 3 to 5 minutes in the working reagent, prepared by adding 2 ml. of glacial acetic acid and 1 ml. of 3% hydrogen peroxide to 10 ml. of the filtered stock solution (1 g. patent blue, 10 g. zinc powder, and 2 ml. glacial acetic acid). Counterstain 30 to 60 seconds in 1:1000 safranin solution in 1% acetic acid, rinse, dehydrate with alcohols, clear in xylene and mount in clarite. Total time required, 37 minutes.

Blood and tissue and smears may be stained, following fixation in methyl alcohol, by applying the working reagent as above.  相似文献   

3.
A modification of Donaldson's iodine-eosin stain for staining intestinal protozoa is presented. This modification consists of using high dilutions of colloidal iodine (Chandler)2 instead of Lugol's solution as well as high dilutions of eosin. A better resolution of the external and internal structures is brought about by the new method.

The procedure is as follows: A portion of the fecal material to be examined is suspended in a 0.6% salt solution; the suspension should be of a consistency so that one drop will make a satisfactory microscope mount under a cover glass. To ten parts of this suspension, in a test tube, is added one part of the stain which is prepared as follows:—

10 parts of distilled water

6 parts of a suspension of colloidal iodine (Chandler) containing 4% iodine—20% iodine suspensoid, Merck

1 part of a 10% water solution of anilin red, Merck (eosin yellowish)

Technicians will find, because iodine in the form of colloidal iodine is readily released to the organisms, that the use of this material is far superior to Lugol's solution hi carrying out the technic for staining intestinal protozoa in the study of fresh mount preparations. Not only are organisms more deeply stained with iodine but by eosin as well, even when employed in high dilutions.  相似文献   

4.
Methods are proposed for staining plant chromosomes with the dye brilliant cresyl blue, and for making these stained preparations permanent by using polyvinyl alcohol mounting medium.

The stain, which is composed of 2% brilliant cresyl blue in 45% aqueous acetic or propionic acid, is used with fixed material in making smear preparations. The technics for staining are similar to those employed in the aceto-carmine method.

The mounting medium is made by mixing 56% polyvinyl alcohol, which is diluted in water to the consistency of thick molasses, with 22% lactic acid and 22% phenol by volume. The permanent slides are made by floating off the cover slip of the temporary slide in 70% alcohol, then applying the mounting medium and replacing the cover slip.

The chief advantages of the methods described are:

1)The preparation of the stain is rapid and simple. The batch of stain will be good with the first try.

2)The staining procedure in some instances is shorter than when using aceto-carmine.

3)The stain shows a high degree of specificity for nuclear structures and gives better results than aceto-carmine when used on certain plant tissues.

4)A minimum number of cells is lost in making the slides permanent when using polyvinyl alcohol mounting medium as the slide and cover slip are run through only one solution prior to mounting.

5)The mounting medium dries rapidly and this shortens the time required before critical examination of the permanent mounts can be made.  相似文献   

5.
Spinal cord of cat and rabbit was stained, after experimental lesions, by variations of Marchi's method. The following conclusions were drawn:

1. The presence of an oxidizing agent (K2Cr2O7, NaIO3, or KCIO3) in the osmic acid solution is of primary importance and a preliminary oxidation in Mueller's fluid is unnecessary or even detrimental.

2. Acetic acid added to Marchi's fluid, accentuates the action of the oxidizing agent in restraining the staining of normal myelin.

3. Too high concentration of oxidizing agent or of acid may inhibit staining of degenerating myelin.

4. Marchi's and Busch's methods have been modified as follows: Fix one day in 10% formalin and transfer without washing to the staining mixture, either A or B. Staining mixture A: Marchi's fluid plus 1 to 3% glacial acetic acid. B: An aqueous solution containing KCIO3 0.25%, osmic acid 0.33%, and acetic acid 1%. Stain about one week. These methods worked on spinal cord and medulla, but cannot be recommended for brain.

5. The detrimental effects of long post mortem autolysis or of prolonged fixation in formalin may be counteracted to some degree by increasing the concentration of the acid in Marchi's fluid up to 5% or of the KCIO3 up to 0.4% in the modified Busch's fluid.  相似文献   

6.
In describing a method of testing for the return of color in decolorized fuchsin for use in Endo Medium, French states that variations in hydrogen ion concentration fail to influence the appearance of color in this medium.

Duplications of this test were made using alcoholic and aqueous solutions of fuchsin and both sodium sulfite and sodium bisulfite as decolorizing agents.

In the decolorized alcoholic solutions of fuchsin the color failed to reappear when formalin was added, but a small amount of a weak solution of lactic acid caused the color to return.

Alcoholic solutions of fuchsin failed to decolorize in sodium bisulfite solutions until a few drops of NaOH were added. The color, then, reappeared immediately.

Solutions of peptones to which fuchsin had been added were substituted for the original fuchsin solution. Alcoholic and aqueous solutions of fuchsin were added to equal amounts of a 1% peptone solution. The peptone solutions varied in their hydrogen ion concentration and the results showed that those which were neutral decolorized readily while the more acid solutions were but partially decolorized.

Fuchsin decolorized according to results found in this test, was not satisfactory in the Endo medium, especially in the case of the aqueous solutions of fuchsin.

Experiments which were carried on by other workers and checked with this method all indicated that some acid is necessary to secure the restoration of color.  相似文献   

7.
The fixing action of 10% formalin solution alone and with formic, acetic, propionic, butyric, lactic, monochloracetic, dichloracetic, or trichloracetic acid was studied by means of stains with silver, osmic acid and cresyl violet. The following conclusions were reached:

1. In general, better fixation and staining was obtained with acid than without.

2. Less difference was seen in comparing one acid with another than was expected before the experiments were made.

3. Propionic, butyric, and dichloracetic showed no promise of having practical value.

4. Formic and monochloracetic acids as modifiers gave superior stains with osmic acid, while silver and cresyl violet stains of the same material were about equal to those made from formalin-acetic fixed material.

5. Lactic acid caused somewhat more distortion of tissue elements than the others but was compatible with good staining.

6. Acetic acid was most effective in concentrations of 3 to 5% while the stronger acids such as formic, monochloracetic, lactic and trichloracetic were effective in concentrations of 0.5 to 1%.  相似文献   

8.
The staining quality of Bismarck brown Y may be improved and sterility maintained by adding 5% phenol to a 1% aqueous solution. Use the phenolic Bismarck brown in combination with iron alum hematoxylin except for stripped epidermis in the following procedures:

Stem and Root Schedule: Mordant sections from water in 4% iron alum for 10 minutes. Rinse in distilled water and stain in 0.5% aqueous hematoxylin for 1 minute or until darkly stained. Rinse in distilled water and destain in 2% iron alum until a gray color appears. Rinse thoroly in distilled water and intensify hematoxylin by transferring sections to 0.5% aqueous lithium carbonate until the desired black color appears. Rinse thoroly in distilled water and stain for 1-5 minutes in phenolic Bismarck brown. Rinse in distilled water, dehydrate successively in 30, 50, 70, 95 and 100% alcohol. Clear in methyl salicylate for 5 minutes, then to xylene for 3-5 minutes, and mount in balsam.

Middle Lamellae in Wood: Destain more thoroly in 2% iron alum than for the general stem and root schedule, and intensify in lithium carbonate for a longer period (about 1 hour).

White Potato Tuber Sections: Modify above schedule by reducing time of destaining in 2% iron alum to about 30-60 seconds and intensify hematoxylin until starch grains appear bluish in color. Stain in phenolic Bismarck brown for 1-2 minutes.

Wheat Grain Sections: Fix grain for sectioning when in “dough” stage. Use schedule the same as for potato tuber except for reducing time of staining in phenolic Bismarck brown to about 45 seconds.

Tradescantia zebrina Epidermis: Strip epidermis from leaf while submerged in water. Fix in 100% alcohol 10 minutes, pass thru 95, 70, 50, 30, and 10% alcohol to water. Stain in phenolic Bismarck brown for 10-20 minutes. Dehydrate, clear in methyl salicylate and mount in balsam.  相似文献   

9.
The writer has made an investigation of various samples of basic fuchsin for use in the Endo medium for differentiating the bacteria of the colon-typhoid group. Various different concentrations of the fuchsin samples have been used in making the media. The conclusions are as follows:

American made fuchsins differ markedly in their alcohol solubility properties. They contain materials which are very readily soluble in 95% alcohol, but which are precipitated by sodium sulphite.

This precipitation may be prevented by increasing the dilution of the fuchsin in alcohol.

In order to secure more dependable results in the use of decolorized basic fuchsin as an indicator in Endo Agar, it is advisable to test the fuchsin in different dilutions in alcohol in order to secure a completely decolorized solution. It is also advisable to carefully test those fuchsins which decolorize only in high dilutions with a known organism in Endo agar before relying on it as a satisfactory indicator for the presence of sewage organisms.  相似文献   

10.
Technics for free-living forms such as Paramecium and for parasitic forms such as the opalinid ciliates are described.

Paramecium: Fix paramecia in hot Schaudinn's fluid containing 5% of glacial acetic acid for 5-15 minutes. (A hot water bath for maintaining the proper temperature of the fixative is described.) Dehydrate up to 83% alcohol. Mount the specimens on albuminized cover glasses. (A table for mounting animals on cover glasses is described.) Apply a thin layer of collodion to the cover glass to prevent the loss of the specimens during the subsequent handling. Pass through descending grades of alcohol to water. Mordant in 4% iron alum for 24 hours. Stain in 0.5% hematoxylin for 24 hours. Destain in saturated aqueous picric acid. Rinse in tap water, expose to ammonia vapor for a second, and then rinse again in tap water. Wash in running water for 1 hour. Dehydrate. Clear, then mount in damar.

Opalinid Ciliates: Make smears on cover glasses and fix them while wet. If the opalinids are to be subsequently stained in hematoxylin, fix in hot Schaudinn's fluid (containing 5% of glacial acetic acid) for 5-15 minutes. Pass through descending grades of alcohol to water. Mordant in iron alum for 24 hours. Stain in hematoxylin for 24 hours. Destain in saturated aqueous picric acid. For Feulgen reaction, fix in a modified weak Flemming's fluid for 1 hour. Wash in running water for 30 minutes. Hydrolyze. Leave 3 hours in fuchsin decolorized with H2SO3 (Feulgen formula). Wash in H2SO3, then in running water for 15 minutes. Dehydrate up to 95% alcohol. Counterstain with fast green FCF for 2 minutes. Dehydrate in absolute alcohol. Clear, then mount in damar.  相似文献   

11.
A method for the dry-preservation of fixed plant material, root tips and buds, is described. The method seems to be advantageous on long expeditions and when material has to be sent away.

The material is transferred from the fixative to 70% alcohol (3 changes, 1/2 hour in the last). It is dried on blotting-paper. The dried material may be preserved a long time. Material kept dry for 4 1/2 years has proved to be quite satisfactory. Drying has been tried after fixation with CRAF-solutions (Webber and Randolph modifications) and fixatives containing osmic acid (Fleming-Benda and 2BD).

The dry material is swollen by keeping for 2 days in 10% alcohol. It is embedded in paraffin according to the usual method. A satisfactory staining has been obtained after these fixatives using iodine-gentian-violet and Feulgen stainings. In addition to chromosome counts dry material may be used for chromosome morphology studies.

Dried material fixed in aceto-alcohol (1:3) has not turned out to be specially suitable for squash preparations owing to the fragility of the chromosomes. If strong pressure is not applied, satisfactory results may, however, be obtained.  相似文献   

12.
Permanent preparations were made of paraffin sections from raw and cooked apple tissues stained with microchemical color reagents for pectins and pentosans. Sections stained with ruthenium red to show pectins were dehydrated and covered in balsam, and sections stained with diphenylene diamine acetate (DDA) to show pentosans were washed with water and covered in Clearcol.

Cooking was accomplished by steaming cubed histological samples. Both raw and steamed specimens were fixed in FAA in a vacuum chamber, dehydrated and cleared in tertiary butyl alcohol, and embedded in paraffin. Paraffin sections first fixed to slides with Haupt's adhesive were further stabilized by immersing in a 1% celloidin solution after dissolving the paraffin.

Ruthenium oxychloride flakes were dissolved in a Coplin jar of water containing 2 drops of ammonium hydroxide. Rehydrated sections were stained in ruthenium red 30 minutes and rinsed in water. Three methods of further preparation follow: (1) Flood sections with 10% gum arabic; drain and air-dry thoroughly; immerse in xylene 5 minutes; cover in balsam. (2) Drain and air-dry sections; if desired, counterstain dry sections with Johansen's fast green solution; immerse in xylene; cover in balsam. (3) Dehydrate by dipping in 70%, 95%, and absolute ethyl alcohol; immerse in xylene; cover in balsam.

DDA was made by heating 15 g. of benzidine in 150 ml. of glacial acetic acid and 450 ml. of water until dissolved, then adding water to make 750 ml. of solution. Rehydrated sections were stained 4 hours in DDA, washed, stained 5 minutes in Congo red (Congo red, 5 g.; NaOH, 5 g.; water, 100 ml.), washed, and covered in Clearcol.

An Autotechnicon was used for dehydration, clearing, infiltration, deparaffinizing sections, and staining. Procedures that necessarily remained manual were fixation in a vacuum chamber, and all operations that followed staining.

Ruthenium red, though the best available indicator for pectins, may not be specific for these substances. DDA and ruthenium red stained identical structures in hypodermis and cortex. DDA also stained cuticle, hence was more useful than ruthenium red for delineating that portion. DDA sections were better for photomicrography, and for measuring thickness of cell walls. Neither stain prevented the study of cell walls in polarized light.  相似文献   

13.
Permanent mounts of certain protozoa and small worms are obtained as follows: kill suspensions of the organisms with Feulgen's fixative (6% HgCl2 in 2% aqu. acetic acid) for 3 to 24 hours. After pipetting off the fixative, add successively: 70% iodized alcohol; ditto, 30 minutes later; 50%, then 35% alcohol; 2 baths distilled water; normal HCl. Transfer to cold water and heat to 60°C for 4 to 5 minutes or longer. Cool under running water; and wash in distilled water.

Stain 1 to 3 hours in Feulgen's fuchsin sulfurous acid (1 g. of a suitable basic fuchsin, e. g. rosanilin hydrochloride, boiled in 200 cc. water, cooled, and allowed to stand 24 hours after adding 20 cc. normal HCl and 1 g. sodium bisulfite). Pass thru 3 baths of 200 cc. distilled water with 10 cc. normal HCl and 1 g. sodium bisulfite. Transfer to water and then to 35%, 70%, and 95% alcohols successively. Counterstain with fast green FCF, orange G or eosin Y in 95% alcohol. Pass thru two changes of absolute alcohol.

Transfer to 10% Venetian turpentine and place in a dessicator; mount after the turpentine has become concentrated.

If sections instead of total mounts are desired, the material should go from absolute alcohol, thru alcohol-xylol and xylol to paraffin (or preferably paraffin of M. P. 56°C with 3% bees-wax). The paraffin may be added to the material in the test tube, and cooled after the organisms have settled. Then break the tube, trim a block, and cut.  相似文献   

14.
A procedure is described for making preparations of woody tissues for visual observation or photography by incident-light fluorescence microscopy. The chief advantages of the technic are the following:

(1) Reliable recognition of anatomical characteristics in wood without ordinary time-consuming histological technics.

(2) Examination of relatively larger surface areas of wood blocks than by usual methods.

(3) Visual observation and, if desired, photography of tissues and cell structure in dry or in nearly natural or fresh condition.

(4) Marked color contrast without the use of stains in many tissues, including specific types of cells comprising them.

(5) Improved color contrast by use of Congo red with aspects not usually obtained by other methods.  相似文献   

15.
A selective, progressive method for staining the skeleton in cleared specimens, developed with rat material.

Fix in 95% alcohol for at least 48 to 96 hrs. Even longer fixation is desirable. Then place in a 1% solution of KOH until the bones are clearly visible through the surrounding tissues. Transfer directly to a dilute solution of alizarin in KOH, one part alizarin to 10,000 parts of 1% KOH. Allow the stain to act until the desired intensity is attained. Fresh stain may be added if necessary.

Complete the clearing process, (1) in Mall's solution, water 79 parts, glycerine 20 parts and KOH 1 part; (2) in increased concentrations of glycerine. Store in pure glycerine.

The success of the method depends on obtaining the proper degree of clearing before staining. If the specimen is insufficiently cleared, a general staining of all tissues usually occurs.  相似文献   

16.
The following method for staining bone and cartilage allows study of the gross cleared specimen and does not injure the tissues for subsequent microscopic study: Fix in 10% neutral formalin; bleach thoroughly in 3% H2O2 in sunlight. Wash in distilled water. Stain bone 24 hours in 0.01 g. of Biebrich scarlet in 100 ml. of distilled water. Destain in 95% alcohol until soft tissues and cartilage are colorless. Stain cartilage 24 hours in a pH2 buffer solution of 2.1g. of citric acid per 100 ml. of water with 0.001 g. of methylene blue. Destain in pH2 buffer solution until soft tissues are pale. Dehydrate in two changes of 95% alcohol in preparation for clearing. (This completes the destaining and may remove too much stain from the cartilage if destaining in the pH2 solution has been carried too far.) Place in Groat's clearing fluid and cover loosely so that the alcohol may evaporate, or remove the alcohol in vacuo. Groat's Mixture No. 19 is usually satisfactory.

For a combined stain, first stain bone, as above, and then apply the cartilage stain.

Seal jars with an ordinary liquid wood glue such as LePage's.  相似文献   

17.
Five different physiological functions of the rabbit (hard faeces and urine excretion, food and water intake and locomotor activity) were registered during LD 12:12 and during continuous light conditions (LL).

(1) In LD 12:12 a strong synchronization of the five parameters existed. The minima of all functions consistently occurred during the hours of light. The nocturnal percentage of overall 24-hr events was increased significantly in 'hard faeces excretion' (66±8 (S.D.) %), 'water intake' (64±15 (S.D.) %) and 'urine excretion' (58±10 (S.D.) %). The nocturnal percentage of locomotor activity was significantly increased during the dark-hours in 9 out of 14 animals. In the other five individuals prominent peaks were present even during the photoperiod. On the average of all 14 animals 5S±13 (S.D.) % of the 24 hr events of locomotor activity occurred during the night. Despite a trough during the cessation of hard faeces excretion the events of food intake were not elevated significantly during the dark hours.

(2) During LL the synchronization of the five functions within each animal persisted during the complete 90-day LL period. A free-running circadian rhythm with-: = 24.8±0.5 (S.D.) hr was present in the four rabbits kept in LL conditions within 5-16 days after the withdrawal of the zeitgeber.

(3) In addition to the circadian period the power spectrum analysis of data obtained during LD 12:12 revealed significant ultradian periods of an average period length of 11,6 hr (hard faeces and urine excretion), 8 hr (food and water intake, locomotor activity) and 4 hr (food intake, locomotor activity). During the free-run ultradian periods of 8 and 3.2-4.2 hr were significant in almost all parameters.

(4) During LL the level of locomotor activity was reduced for 13±16 (S.D.) %, the events of food intake were increased for 17±12 (S.D.) %.

(5) The reinserted LD 12:12 zeitgeber re-entrained the circadian rhythms within 25-45 days.

(6) These results provided evidence of a predominant nocturnality of the rabbits under investigation.  相似文献   

18.
A method for impregnating oligodendroglia in nervous tissue (monkey) fixed and preserved in formalin for many years is described. This tissue is reconditioned by placing 12 to 30μ frozen sections of it in concentrated ammonia (sp. gr. 0.90) and by washing them slowly for 24 hours with a 1 mm. stream of water. The fluid is then poured off the sections; the jar is refilled with concentrated ammonia; and washing is repeated for another 24 hours. The sections are then plunged into concentrated ammonia for 7 minutes.

After treatment in ammonia, the sections are incubated for one hour at 38oC. in Globus' 5% hydrobromic acid solution. They are washed again, in distilled water, and then impregnated in a “medium” strength ammoniacal silver carbonate solution (5 ml. of 10% AgNO3 added to 15 ml. of 5% Na2CO3. The precipitate is dissolved in concentrated ammonia and diluted to SO ml. with distilled water). Impregnation is followed by reduction in 1% formalin without agitation; fixation in 5% Na2S2O3; dehydration, and mounting in clarite.

Typical oligodendroglia (Fig. 1) were made visible by use of the method outlined in this paper.  相似文献   

19.
Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized.

In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (CHCIl2, CCI3, CH2O) have been formed.

Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids.

The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tc has been determined for each type of micelle.

Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with rneta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposorne containing a fluorescent probe has been analysed. When this synthetic nitrosodiphenyl ether is added to a medium containing soja azolectin liposomes and a carboxyfluorescein, fluorescent probe placed inside the liposornes, a rapid increase in the fluorescence of the medium is observed. The nitrosodiphenyl ether induce a break in the liposorne membrane.  相似文献   

20.
Digestion in 1% U. S.P. malt diastase or in 1% ptyalin at 37°C. for 1 hour is an effective substitute for the salivary digestion test used by Bauer, by Bensley and others for the identification of glycogen. Actually the test is not specific for glycogen, since diastase, ptyalin and amylopsin digest other polysaccharides than glycogen, notably starch. In animal tissues this should produce no confusion. Of the two samples tested, the malt diastase proved somewhat more effective than ptyalin and can be fully recommended for sharpness of results.

The enzymes should be dissolved in a buffered neutral saline solution consisting of 8g. NaCl, 1.3 g. Na2HPO4 and 0.8 g. NaH2PO4-H2O in 1 liter of water. This solvent by itself does not remove glycogen from liver sections in 1 hour at 37°C.

Enzyme tests should be done on uncollodionized sections. Since collodionization permits demonstration of larger amounts of glycogen by both the Best and Bauer methods, this step should be interposed after the digestion test and before the specific glycogen stain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号