首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.  相似文献   

2.
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.  相似文献   

3.
4.
5.
6.
Bezafibrate is a known activator of peroxisome proliferator-activated receptors (PPARs) that can activate both PPARalpha and PPARbeta. To determine the role(s) of these receptors in mediating the biological effects of this chemical, the effect of bezafibrate was examined in PPARalpha-null and PPARbeta-null mice. Wild-type, PPARalpha-null, or PPARbeta-null mice were fed either a control diet or one containing 0.5% bezafibrate for 10 days. Bezafibrate feeding caused a significant increase in liver weight in wild-type and PPARbeta-null mice compared to controls, while liver weight was unchanged in bezafibrate-fed PPARalpha-null mice. Gonadal adipose stores were significantly smaller in wild-type and PPARbeta-null mice fed bezafibrate than in controls, and this effect was not found in similarly fed PPARalpha-null mice. Analysis of liver, white adipose tissue, and intestinal mRNAs showed that bezafibrate caused similar changes of mRNAs encoding lipid metabolizing enzymes in wild-type and PPARbeta-null mice compared to controls. Interestingly, in PPARalpha-null mice, bezafibrate also induced several mRNAs previously thought to be solely controlled by PPARalpha, showing that the effects of this drug are not exclusively modulated by this PPAR isoform. Western blot analysis of liver protein was consistent with changes in mRNA expression showing that the alterations in mRNA expression correlate with protein expression in this tissue. Results from these studies demonstrate that the effect of bezafibrate is mediated in large part by PPARalpha, although some changes in gene expression are dependent on PPARbeta. In contrast to other PPARalpha ligands such as WY-14,643, induction of some target genes by bezafibrate can also be modulated in the absence of a functional PPARalpha.  相似文献   

7.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-alpha in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-alpha has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-alpha.  相似文献   

8.
9.
10.
11.
We previously demonstrated that starvation markedly increased the amount of mRNA and protein levels of the intestinal H+/peptide cotransporter (PEPT1) in rats, leading to altered pharmacokinetics of the PEPT1 substrates. In the present study, the mechanism underlying this augmentation was investigated. We focused on peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a pivotal role in the adaptive response to fasting in the liver and other tissues. In 48-h fasted rats, the expression level of PPARalpha mRNA in the small intestine markedly increased, accompanied by the elevation of serum free fatty acids, which are endogenous PPARalpha ligands. Oral administration of the synthetic PPARalpha ligand WY-14643 to fed rats increased the mRNA level of intestinal PEPT1. Furthermore, treatment of the human intestinal model, Caco-2 cells, with WY-14643 resulted in enhanced PEPT1 mRNA expression and uptake activity of glycylsarcosine. In the small intestine of PPARalpha-null mice, augmentation of PEPT1 mRNA during fasting was completely abolished. In the kidney, fasting did not induce PEPT1 expression in either PPARalpha-null or wild-type mice. Together, these results indicate that PPARalpha plays critical roles in fasting-induced intestinal PEPT1 expression. In addition to the well-established roles of PPARalpha, we propose a novel function of PPARalpha in the small intestine, that is, the regulation of nitrogen absorption through PEPT1 during fasting.  相似文献   

12.
Uncoupling protein 2 (UCP2) has been proposed to play a prominent role in the regulation of energy balance. UCP2 mRNA expression is upregulated in white adipose tissue (WAT) and liver, but is not altered in skeletal muscle in genetically obese ob/ob mice. The mechanisms involved in the upregulation of UCP2 in obesity have not been investigated. We have now examined the potential role of leptin, hyperphagia, increased tissue lipid content, and overexpression of tumor necrosis factor (TNF)-α in the upregulation of UCP2 mRNA expression in the liver and WAT in ob/ob mice. Treatment of ob/ob mice with leptin for 3 days significantly reduced their food intake but had no effect on the upregulation of UCP2 mRNA levels in the liver or WAT. To investigate the effect of feeding and higher tissue lipid content on the upregulation of UCP2 in liver and WAT, we compared UCP2 mRNA levels in ad-libitum fed and 72-h fasted control and ob/ob mice. In controls, fasting had no effect on UCP2 mRNA levels in liver, but increased UCP2 mRNA in WAT suggesting that the effects of fasting on UCP2 mRNA levels are tissue-specific. In ob/ob mice, fasting did not lower UCP2 mRNA levels in liver or WAT suggesting that the upregulation of UCP2 in ob/ob mice is not merely a direct consequence of increased food intake. 72-h fasting lowered hepatic total lipid content by 34% and 36% in control and ob/ob mice, respectively, without any corresponding decrease in hepatic UCP2 mRNA levels, suggesting that the enhanced UCP2 expression in the liver of ob/ob mice is not secondary to lipid accumulation in their livers. Although TNF-α has been shown to acutely increase UCP2 mRNA levels in liver and WAT, and is overexpressed in adipose tissue in obesity, deletion of the genes for both TNF receptors in ob/ob mice produces a further increase in UCP2 mRNA expression in liver and adipose tissue indicating a paradoxical inhibitory role. Taken together, these results suggest that the upregulation of UCP2 mRNA levels in the liver and WAT of ob/ob mice is not due to the lack of leptin, hyperphagia, increased tissue lipid content, or over-expression of TNF-α.  相似文献   

13.
PPARalpha is a key regulator of hepatic FGF21   总被引:8,自引:0,他引:8  
The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARalpha). Fasting or treatment of mice with the PPARalpha agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPARalpha deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPARalpha levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPARalpha for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPARalpha response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPARalpha in humans will be of great interest.  相似文献   

14.
15.
Diabetes, lipids, and adipocyte secretagogues.   总被引:17,自引:0,他引:17  
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.  相似文献   

16.
Lipogenic gene expression in liver is repressed in mice upon leucine deprivation. The hormone fibroblast growth factor 21 (FGF21), which is critical to the adaptive metabolic response to starvation, is also induced under amino acid deprivation. Upon leucine deprivation, we found that FGF21 is needed to repress expression of lipogenic genes in liver and white adipose tissue, and stimulate phosphorylation of hormone-sensitive lipase in white adipose tissue. The increased expression of Ucp1 in brown adipose tissue under these circumstances is also impaired in FGF21-deficient mice. Our results demonstrate the important role of FGF21 in the regulation of lipid metabolism during amino acid starvation.  相似文献   

17.
18.
Fibrinogen like protein 1(Fgl1) is a secreted protein with mitogenic activity on primary hepatocytes. Fgl1 is expressed in the liver and its expression is enhanced following acute liver injury. In animals with acute liver failure, administration of recombinant Fgl1 results in decreased mortality supporting the notion that Fgl1 stimulates hepatocyte proliferation and/or protects hepatocytes from injury. However, because Fgl1 is secreted and detected in the plasma, it is possible that the role of Fgl1 extends far beyond its effect on hepatocytes. In this study, we show that Fgl1 is additionally expressed in brown adipose tissue. We find that signals elaborated following liver injury also enhance the expression of Fgl1 in brown adipose tissue suggesting that there is a cross talk between the injured liver and adipose tissues. To identify extra hepatic effects, we generated Fgl1 deficient mice. These mice exhibit a phenotype suggestive of a global metabolic defect: Fgl1 null mice are heavier than wild type mates, have abnormal plasma lipid profiles, fasting hyperglycemia with enhanced gluconeogenesis and exhibit differences in white and brown adipose tissue morphology when compared to wild types. Because Fgl1 shares structural similarity to Angiopoietin like factors 2, 3, 4 and 6 which regulate lipid metabolism and energy utilization, we postulate that Fgl1 is a member of an emerging group of proteins with key roles in metabolism and liver regeneration.  相似文献   

19.
The metabolic syndrome, a common disorder including glucose intolerance and dyslipidemia, poses a major public health issue. Patients with high blood lipids, such as triglycerides, are at high risk in developing atherosclerotic cardiovascular diseases. To identify genes involved in metabolism, we performed RNA-seq experiments on the liver and fat in mice treated with a high-fat diet or fasting, and identified Gm6484 (named Lipasin) as a novel nutritionally regulated gene. Human LIPASIN is liver specific, while the mouse one is enriched in the liver and fat, including both brown and white adipose tissues. Obesity increases liver Lipasin, whereas fasting reduces its expression in fat. ANGPTL3 (Angiopoietin-like 3) and ANGPTL4 are critical regulators of blood lipids. LIPASIN shares homology with ANGPTL3's N-terminal domain that is needed for lipid regulation, and with ANGPTL4's N-terminal segment that mediates lipoprotein lipase (LPL) binding. Lipasin overexpression by adenoviruses in mice increases serum triglyceride levels, and a recombinant Lipasin inhibits LPL activity. Therefore, a potential mechanism for Lipasin-mediated triglyceride elevation is through reduced triglyceride clearance by LPL inhibition. Lipasin is thus a novel nutritionally-regulated liver-enriched factor that plays a role in lipid metabolism.  相似文献   

20.
PPARalpha and dyslipidemia   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号