首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Cellulosic biomass is available for the production of biofuel, with saccharification of the cell wall being a key process. We investigated whether alteration of arabinoxylan, a major hemicellulose in monocots, causes an increase in saccharification efficiency. Arabinoxylans have β-1,4-D-xylopyranosyl backbones and 1,3- or 1,4-α-l-arabinofuranosyl residues linked to O-2 and/or O-3 of xylopyranosyl residues as side chains. Arabinose side chains interrupt the hydrogen bond between arabinoxylan and cellulose and carry an ester-linked feruloyl substituent. Arabinose side chains are the base point for diferuloyl cross-links and lignification. We analyzed rice plants overexpressing arabinofuranosidase (ARAF) to study the role of arabinose residues in the cell wall and their effects on saccharification. Arabinose content in the cell wall of transgenic rice plants overexpressing individual ARAF full-length cDNA (OsARAF1-FOX and OsARAF3-FOX) decreased 25% and 20% compared to the control and the amount of glucose increased by 28.2% and 34.2%, respectively. We studied modifications of cell wall polysaccharides at the cellular level by comparing histochemical cellulose staining patterns and immunolocalization patterns using antibodies raised against α-(1,5)-linked l-Ara (LM6) and β-(1,4)-linked d-Xyl (LM10 and LM11) residues. However, they showed no visible phenotype. Our results suggest that the balance between arabinoxylan and cellulose might maintain the cell wall network. Moreover, ARAF overexpression in rice effectively leads to an increase in cellulose accumulation and saccharification efficiency, which can be used to produce bioethanol.  相似文献   

2.
The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included.  相似文献   

3.
Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function.  相似文献   

4.
Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.  相似文献   

5.
Cultured maize cells habituated to grow in the presence of the cellulose synthesis inhibitor dichlobenil (DCB) have a modified cell wall in which the amounts of cellulose are reduced and the amounts of arabinoxylan increased. This paper examines the contribution of cell wall-esterified hydroxycinnamates to the mechanism of DCB habituation. For this purpose, differences in the phenolic composition of DCB-habituated and non-habituated cell walls, throughout the cell culture cycle and the habituation process were characterized by HPLC. DCB habituation was accompanied by a net enrichment in cell wall phenolics irrespective of the cell culture phase. The amount of monomeric phenolics was 2-fold higher in habituated cell walls. Moreover, habituated cell walls were notably enriched in p-coumaric acid. Dehydrodimers were 5–6-fold enhanced as a result of DCB habituation and the steep increase in 8,5′-diferulic acid in habituated cell walls would suggest that this dehydrodimer plays a role in DCB habituation. In summary, the results obtained indicate that cell wall phenolics increased as a consequence of DCB habituation, and suggest that they would play a role in maintaining the functionality of a cellulose impoverished cell wall.  相似文献   

6.
Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane.  相似文献   

7.
Cell walls of suspension-cultured cells of Rosa glauca were fractionated by two different extraction procedures. The first involved a stepwise fractionation scheme based on alkaline extraction. The second took advantage of the powerful cellulose solvent system N-methylmorpholine N-oxide/dimethyl sulfoxide which is capable of solubilizing whole cell walls. From the analytical composition of each solubilized fraction and of the corresponding residues, the fate of each type of cell wall polysaccharide constituent was followed at each step of the extraction scheme and the mode of action of the extractant was interpreted. Although the two fractionation procedures were very different, they yielded very similar cellulosic complex residues and extracts, thus delimiting two blocks of polysaccharides in the cell wall. The cellulose residues still comprised uronic acid-containing polysaccharides and hemicelluloses in association with cellulose. Graded acid hydrolysis provided evidence for the central role of a homogalacturonan core interconnecting xyloglucans and arabinogalactans. A tentative model showing the possible interaction existing between the constituent polysaccharides still associated to cellulose after alkaline extraction is presented. Hydrogen bonding between xyloglucan and cellulose is confirmed, and glycosidic linkages between xyloglucans and pectic polymers are suggested.  相似文献   

8.
Cell walls from cotyledons of smooth field pea, broad bean and soya bean contain ca 55% pectic polysaccharides associated with 9% cellulose. Arabinose is the major pectic sugar of pea and broad bean walls whereas soya bean pectic polymers are constituted of galactose and arabinose in the ratio (2:1). Galacturonic acid represents ca 20% of the walls. In addition, pea and broad bean cell walls contain, respectively, 12% and 6% of non-starchy and non-cellulosic glucans bearing 4,6-linked and 3-linked glycosyl units. EDTA-soluble acidic pectic substances are distinct rhamnogalacturonans bearing decreasing proportions of interrupting rhamnose from highly interrupted moieties to nearly homogenous homogalacturonans. Pea and broad bean rhamnogalacturonans are associated with arabinose-containing polymers of average DP ca 30–35 whereas soya bean ones have side chains of arabinose and galactose of DP ca 40.  相似文献   

9.
Structural features of feruloylated arabinoxylan (feraxan) present in Zea mays L. (hybrid B 73 × Mo 17) coleoptile cell walls have been studied using a purified feraxan-dissociating enzyme (feraxanase) and an α-arabinofuranosidase. This experimental approach has demonstrated the following. (a) Feraxanase dissociated ca. 20% (dry weight basis) of the maize wall preparation. The predominant oligosaccharides enzymically liberated were allocated into seven major subfractions designated A-1 (0.8%), B-1 (1.6%), B-2 (2.4%), B-3 (4.6%), C-1 (1.0%), C-2 (4.2%), and C-3 (0.3%). Values in parentheses reflect the percentage of the wall associated with each subfraction. Subfractions represent samples enriched in different degrees of polymerization, sugar composition, linkage arrangements, and phenolic acid content. (b) B-1, B-2, and B-3 fractions are not feruloylated and have smaller molecular mass (less than 104 kilodaltons) and consist chiefly of t-arabinosyl-5-arabinosyl, 4-xylosyl, 2,4/3,4-xylosyl, and glucuronosyl residues, suggesting that these fragments constitute nonferuloylated regions of arabinoxylan. (c) C-2 and C-3 fractions contain ferulic acid (6.2% and 12.1%, respectively) and are similar to the B series in their sugar linkage arrangements but were derived from feruloylated regions. (d) Alkali treatment of the C-2 fraction decreases the molecular size of the fragment and liberates phenolic acids. The results suggest the presence of alkaline-labile links, probably diferulate bridges. (e) A-1 and C-1 fractions are larger (more than 5 × 105 kilodalton) and contain t-galactosyl-, 4-galactosyl, 2,4-rhamnosyl-residues, galacturonic acid, and the sugar linkage arrangements common to other fractions. The A-1 fraction is not feruloylated, whereas C-1 fraction contains 0.5% ferulic acid. The presence of galactose, rhamnose, and galacturonic acid suggests that pectic polymers, probably homopolygalacturonans and rhamnogalacturonans, are linked to nonferuloylated and feruloylated segments of arabinoxylans.  相似文献   

10.
Features of the interaction between cellulose and xyloglucan have been studied using the cellulose-producing bacterium Acetobacter aceti ssp. xylinum (ATCC 53524) and tamarind seed xyloglucan. Direct microscopic evidence is provided for the generation of cross-bridges between cellulose ribbons produced in the presence of xyloglucan but not carboxymethyl-cellulose. Cross-bridge lengths are very similar to those observed for de-pectinated onion cell walls. Similar cross-bridge lengths are observed following mixing of isolated A. xylinum cellulose and xyloglucan, showing that network formation can be an abiotic process. The level of incorporation of xyloglucan in an actively growing system (ca. 38% of cellulose) is an order of magnitude higher than that observed in mixtures of isolated polymers and is comparable with cell wall levels. NMR spectroscopy suggests that 80–85% of incorporated xyloglucan is segmentally rigid with the backbone adopting an extended ‘cellulosic’ conformation and probably aligned with cellulose chains. The remaining xyloglucan is more mobile and is assigned to cross-bridges with, on average, a twisted backbone conformation. No evidence for specific involvement of side-chain residues in binding is found, and the observation of cross-bridges with a non-fucosylated xyloglucan shows that fucose residues are not essential for network formation. Xyloglucan causes cellulose ribbons to become more amorphous and to have a decreased 1α/1β crystallite ratio without any significant alteration in ribbon diameter. Based on the findings that levels of xyloglucan incorporation, the presence and lengths of cross-bridges, and the modification of cellulosic molecular organization are all similar to those found in plant cell walls, we suggest that A. aceti ssp. xylinum is a more useful model for primary plant cell walls and their assembly than has previously been appreciated.  相似文献   

11.
Fertilization triggers the assembly of a cell wall around the egg cell of three brown algae, Fucus vesiculosus, F. distichus, and F. inflatus. New polysaccharide polymers are continually being added to the cell wall during the first 24 hours of synchronous embryo development. This wall assembly involves the extracellular deposition of fibrillar material by cytoplasmic vesicles fusing with the plasma membrane. One hour after fertilization a fragmented wall can be isolated free of cytoplasm and contains equal amounts of cellulose and alginic acid with no fucose-containing polymers (fucans) present. Birefringence of the wall caused by oriented cellulose microfibrils is not detected in all zygotes until 4 hours, at which time intact cell walls can be isolated that retain the shape of the zygote. These walls have a relatively low ratio of fucose to xylose and little sulfate when compared to walls from older embryos. When extracts of walls from 4-hour zygotes are subjected to cellulose acetate electrophoresis at pH 7, a single fucan (F1) can be detected. By 12 hours, purified cell walls are composed of fucans containing a relatively high ratio of fucose to xylose and high levels of sulfate, and contain a second fucan (F2) which is electrophoretically distinct from F1. F2 appears to be deposited in only a localized region of the wall, that which elongates to form the rhizoid cell. Throughout wall assembly, the polyuronide block co-polymer alginic acid did not significantly vary its mannuronic (M) to guluronic (G) acid ratio (0.33-0.55) or its block distribution (MG, 54%; GG, 30%; MM, 16%). From 6 to 24 hours of embryo development, the proportion of the major polysaccharide components found in purified walls is stable. Alginic acid is the major polymer and comprises about 60% of the total wall, while cellulose and the fucans each make-up about 20% of the remainder. During the extracellular assembly of this wall, the intracellular levels of the storage glucan laminaran decreases. A membrane-bound β-1, 3-exoglucanase is found in young zygotes which degrades laminaran to glucose. It is postulated that hydrolysis of laminaran by this glucanase accounts, at least in part, for glucose availability for wall biosynthesis and the increase in respiration triggered by fertilization. The properties and function of alginic acid, the fucans, and cellulose are discussed in relation to changes in wall structure and function during development.  相似文献   

12.
Primary plant cell walls contain highly hydrated biopolymer networks, whose major chemistry is known but whose relationship to architectural and mechanical properties is poorly understood. Nuclear magnetic resonance spectroscopy has been used to characterize segmental mobilities via relaxation and anisotropy effects in order to add a dynamic element to emerging models for cell wall architecture. For hydrated onion cell wall material, single pulse excitation revealed galactan (pectin side chains), provided that dipolar decoupling was used, and some of the pectin backbone in the additional presence of magic angle spinning. Cross-polarization excitation revealed the remaining pectin backbones, which exhibited greater mobility (contact time dependence, dipolar dephasing) than the cellulose component, whose noncrystalline and crystalline fractions showed no mobility discrimination. 1HT2 behavior could be quantitatively interpreted in terms of high resolution observabilities. Mobility-resolved spectroscopy of cell walls from tomato fruit, pea stem, and tobacco leaf showed similar general effects. Nuclear magnetic resonance study of the sequential chemical extraction of onion cell wall material suggests that galactans fill many of the network pores, that extractability of pectins is not dependent on segmental mobility, and that some pectic backbone (and not side chain) is strongly associated with cellulose. Analysis of the state of cellulose in four hydrated cell walls suggests a noncrystalline content of 60–80% and comparable amounts of Iα and Iβ polymorphs in the crystalline fraction. Comparison with micrographs for onion cell walls shows that noncrystalline cellulose does not equate to chains on fibril surfaces, and chemical shifts show that fully solvated cellulose is not a significant component in cell walls. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.  相似文献   

14.
15.
Three novel β-xylan xylanohydrolases capable of dissociating ferulated arabinoxylan (Feraxan) from maize (Zea mays L. hybrid B73 × Mo17) coleoptile sections and two conventional β-xylan xylanohydrolases (xylanases) were purified from a Bacillus subtilis industrial enzyme preparation (Novo Ban L-120). The Feraxan-dissociating enzymes (designated as feraxanases) exhibit optimum activities between pH 6.5 and 7.0 and have common molecular weights of 45 kilodaltons as studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two xylanases exhibit their optimum activities between pH 4.5 and 6.0 and have common molecular weights of 27 kilodaltons. Feraxanases liberate oligomeric fragments, which accounted for the following percentages of walls of Zea mays coleoptile sections that had been pretreated by boiling in 80% ethanol: 76% of the ferulic acid, 96% of the arabinose, 71% of the xylose, 27% of the galactose, 50% of the uronic acid, and 4% of the glucose. Monomers, dimers, trimers, or tetramers were not found among enzyme digestion products. The enzymes hydrolyzed both Feraxan in intact cell wall and maize arabinoxylans extracted from walls by alkaline solutions but did not degrade other substrates including larch arabinoxylan and Rhodymenia xylan. Structural analyses of the fragments released by the enzymes from the maize cell wall indicated the presence of 2,4/3,4-linked-xylopyranosyl, terminal-arabinofuranosyl, 5-linked-arabinofuranosyl, 4-linked-xylopyranosyl, terminal-glucuronopyranosyl, and ferulic acid as major components. This result is consistent with the idea that most of the fragments were derived from Feraxan. Because of high enzyme specificity and substantial recovery of digestion products from maize cell walls, these new enzymes offer opportunities not only for enhanced structural analyses of cell walls but also for assistance in protoplast preparation from cereals.  相似文献   

16.
17.
The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo‐SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β‐glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo‐SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with β‐glucan depositions on the inside. During germination, arabinoxylan and β‐glucan are hydrolysed, but unlike β‐glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.  相似文献   

18.
Summary Calcofluor White ST is a fluorescent brightener that has previously been shown to alter cellulose ribbon assembly in the bacteriumAcetobacter xylinum. In this report, we demonstrate that Calcofluor also disrupts cell wall assembly in the eukaryotic algaOocystis apiculata. When observed with polarization microscopy, walls altered by Calcofluor show reduced birefringence relative to controls. Electron microscopy has shown that these altered walls contain regions which consist primarily of amorphous material and which generally lack organized microfibrils. We propose that wall alteration occurs because Calcofluor binds with the glucan chains polymerized by the cellulose synthesizing enzymes as they are produced. As a consequence, the glucan chains are prevented from co-crystallizing to form microfibrils. Synthesis of normal walls resumes when Calcofluor is removed, which is consistent with our proposal that Calcofluor acts by direct physical interaction with newly synthesized wall components.Several types of fluorescent patterns at the cell wall/plasmalemma interface have also been observed following Calcofluor treatment. Fluorescent spots, striations; helical bands, and lens-shaped thickenings have been documented. Each of these patterns may be the result of the interaction of Calcofluor with cellulose at different spatial or temporal levels or from varying concentrations of the brightener itself. Helical bands and lens-shaped thickenings also have been examined with the electron microscope. Like other regions of wall alteration, they are found to contain primarily amorphous material. Finally, we note that cells with severely disrupted walls are unable to complete their normal life cycle.  相似文献   

19.
THE cell walls of Gram-positive bacteria consist principally of a water-insoluble polymer and peptidoglycan (synonyms, murein, mucopeptide, glycosaminopeptide), which in some cases accounts for as much as 90% of the cell wall. After other components (teichoic acid, teichuronic acid, polysaccharide or protein) have been gently removed from the cell walls, peptidoglycan remains as a cell-shaped structure at least 100 Å thick. We report here results of X-ray diffraction observations on whole cell walls and peptidoglycans of Staphylococcus aureus, Bacillus licheniformis and Micrococcus lysodeikticus. Chemical data shows that all the muramic acid residues in the glycan chains of the peptidoglycan of S. aureus are substituted with the peptide L Ala-D GluNH2-L Lys-D Ala and that there is extensive cross linking by pentaglycine bridges between peptides on adjacent glycan chains1,3. Such a peptidoglycan might be expected to have an ordered crystalline structure. On the contrary, peptidoglycans of the bacilli, in which the cross linking between peptides is direct and considerably less4,5 might be expected to have a less ordered structure. The mode of packing of the glycan and peptide moieties has been considered by Kelemen and Rogers6. When the glycan chains are stacked in pairs, as in the analogous polysaccharide chitin7, the muramic acid residues are orientated in such a way as to allow a three-dimensional structure to be built. If the bulk of the peptides are then arranged in a pseudo β configuration, calculations show that the expected dimensions of the cell wall calculated from the model are of the right order and also such a model allows for the existence of extensive stabilizing hydrogen bonds between adjacent peptide chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号