首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined parameters that affect sequence-specific interactions of the mouse c-myb protein with DNA oligomers containing the Myb-binding motif (CA/CGTTPu). Complexes formed between these oligomers and in vitro translated c-myb proteins were analysed by electrophoresis on non-denaturing polyacrylamide gels using the mobility-shift assay. By progressive truncation of c-myb coding sequences it was demonstrated that amino acids downstream of a region of three imperfect 51-52 residue repeats (designated R1, R2 and R3), which are located close to the amino terminus of the protein, had no qualitative or quantitative effect on the ability to interact specifically with this DNA motif. However, removal of only five amino acids of the R3 repeat completely abolished this activity. The contribution of individual DNA-binding domain repeats to this interaction was investigated by precisely deleting each individually: it was demonstrated that a combination of R2 and R3 was absolutely required for complex formation while the R1 repeat was completely dispensible. c-myb proteins showed quantitatively greater interaction with oligomers containing duplicated rather than single Myb-binding motif, in particular where these were arranged in tandem. Moreover, it was observed that c-myb protein interacted with these tandem motifs as a monomer. These findings imply that a single protein subunit straddles adjacent binding sites and the implications for c-myb activity are discussed.  相似文献   

2.
The XmaI endonuclease recognizes and cleaves the sequence C decreases CCGGG. Magnesium is required for catalysis, however, the enzyme forms stable, specific complexes with DNA in the absence of magnesium. An association constant of 1.2 x 10(9)/M was estimated for the affinity of the enzyme for a specific 195 bp fragment. Competition assays revealed that the site-specific association constant represented an approximately 10(4)-fold increase in affinity over that for non-cognate sites. Missing nucleoside analyses suggested an interaction of the enzyme with each of the cytosines and guanines within the recognition site. Recognition of each of the guanines was also indicated by dimethylsulfate interference footprinting assays. The phosphates 5' to the guanines within the recognition site appeared to be the major sites of interaction of XmaI with the sugar-phosphate backbone. No significant interaction of the protein was observed with phosphates flanking the recognition sequence. Comparison of the footprinting patterns of XmaI with those of the neoschizomer SmaI (CCC decreases GGG) revealed that the two enzymes utilize the same DNA determinants in their specific interaction with the CCCGGG recognition site.  相似文献   

3.
4.
Partitioning of energy in the interaction of non-intercalating antibiotics (netropsin, netropsin without its cationic ends and two analogs of distamycin A) with different base sequences of B-DNA is studied here by the atom-atom potential technique and geometry optimization procedures. The results show that electrostatic forces contribute substantially to the stabilization energy as well as to the sequence specificity. The hydrogen-bonding term is also sequence specific and is significant in properly orienting the drug molecule. Relative roles of the hydrogen bonding and electrostatic interactions depend on the dielectric property of the medium.  相似文献   

5.
We present the results of in vitro binding studies aimed at defining the key recognition elements on the MS2 RNA translational operator (TR) essential for complex formation with coat protein. We have used chemically synthesized operators carrying modified functional groups at defined nucleotide positions, which are essential for recognition by the phage coat protein. These experiments have been complemented with modification-binding interference assays. The results confirm that the complexes which form between TR and RNA-free phage capsids, the X-ray structure of which has recently been reported at 3.0 A, are identical to those which form in solution between TR and a single coat protein dimer. There are also effects on operator affinity which cannot be explained simply by the alteration of direct RNA-protein contacts and may reflect changes in the conformational equilibrium of the unliganded operator. The results also provide support for the approach of using modified oligoribonucleotides to investigate the details of RNA-ligand interactions.  相似文献   

6.
The DNase I footprinting analysis shows binding sites of approximately two or three base pairs, in particular 5'-XGC sequences, for the green-colored Co(III) and fully oxidized Fe(III) complexes of bleomycin (BLM). In contrast to covalent attachment of guanine N-7 with aflatoxin B1 or dimethyl sulfate, the modification of guanine 2-amino group with anthramycin remarkably inhibits the DNA cleavages at 5'-GC and 5'-GT sites by the iron and cobalt complex systems of BLM. The present results strongly indicate that metallobleomycin binds in minor groove of B-DNA and that the 2-amino group of guanine adjacent to 5'-side of the cleaved pyrimidine base is one key element of specific 5'-GC or 5'-GT recognition by metallobleomycin. On the basis of these experimental data, possible binding mode of metallobleomycin in B-DNA helix has been proposed by computer-constructed model building.  相似文献   

7.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

8.
The following ligands were used to study sequence specific recognition of duplex DNA by electron microscopic techniques: methyltransferases BspR1 and EcoR124 (recognition sequences GGCC and GAAN7RTCG, respectively), a biotinylated deoxyoligonucleotide 5′-CTCTCTCTCTCTCT-3′ capable of forming triplex DNA, and PNA oligomer H-T10-LysNH2. For each ligand the best conditions for electron microscopic (EM)detection of stable specific complex formation were determined. It was demonstrated that EM allowed us to determine the position of the individual target site with an error of 15–20 bp, the relative affinities for individual target sites and kinetic parameters of the binding. These results open new possibilities for EM investigations of sequence-specific interactions with a wide range of other ligands of a similar nature. They also imply that a wide range of different sequences can be unambiguously and precisely mapped by EM and greatly extend the scope of EM applications for physical mapping of genomic DNA.  相似文献   

9.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

10.
11.
12.
13.
We report the DNA binding properties of two hybrid molecules which result from the combination of the DNA sequence-specific minor groove ligand netropsin with the bithiazole moiety of the antitumor drug bleomycin. The drug-DNA interaction has been investigated by means of electric linear dichroism (ELD) spectroscopy and DNase I footprinting. In compound 1 the two moieties are linked by a flexible aliphatic tether while in compound 2 the two aromatic ring systems are directly coupled by a rigid peptide bond. The results are consistent with a model in which the netropsin moiety of compound 1 resides in the minor groove of DNA and where the appended bithiazole moiety is projected away from the DNA groove. This monocationic hybrid compound has a weak affinity for DNA and shows a strict preference for A and T stretches. ELD measurements indicate that in the presence of DNA compound 2 has an orientation typical of a minor groove binder. Similar orientation angles were measured for netropsin and compound 2. This ligand which has a biscationic nature tightly binds to DNA (Ka = 6.3 x 10(5) M-1) and is mainly an AT-specific groove binder. But, depending on the nature of the sequence flanking the AT site first targeted by its netropsin moiety, the bithiazole moiety of 2 can accommodate various types of nucleotide motifs with the exception of homooligomeric sequences. As evidenced by footprinting data, the bithiazole group of bleomycin acts as a DNA recognition element, offering opportunities to recognize GC bp-containing DNA sequences with apparently a preference (although not absolute) for a pyrimidine-G-pyrimidine motif. Thus, the bithiazole unit of bleomycin provides an additional anchor for DNA binding and is also capable of specifically recognizing particular DNA sequences when it is appended to a strongly sequence selective groove binding entity. Finally, a model which schematizes the binding of compound 2 to the sequence 5'-TATGC is proposed. This model readily explains the experimentally observed specificity of this netropsin-bithiazole conjugate.  相似文献   

14.
A eukaryotic sequence-specific endonuclease, Endo.SceI, causes sequence-specific double-stranded scission of double-stranded DNA to produce cohesive ends with four bases protruding at the 3' termini. Unlike in the case of restriction enzymes, an asymmetric 26-base pair consensus sequence was found around the cleavage site for Endo.SceI instead of a common sequence. We analyzed the base pairs that interacted with Endo.SceI on the recognition of its cleavage sites. A region comprising -10 through +16 base pairs from the center of the cleavage site was shown to be essential and sufficient for the sequence-specific cutting with Endo.SceI by experiments involving synthesized DNAs. Methylation interference experiments indicate that bases in the region comprising the +7 through +14 base pairs is involved in close contact with Endo.SceI in its recognition of the cleavage site. This +7 through +14-base pair region overlaps the most stringently conserved sequence in the consensus sequence for the cleavage site, suggesting that this region constitutes the core for the recognition by Endo.SceI.  相似文献   

15.
In the course of a program aimed at discovering novel DNA-targeted antiparasitic drugs, the phenylfuran-benzimidazole unfused aromatic dication DB293 was identified as the first diamidine capable of forming stacked dimers in the DNA minor groove of GC-containing sequences. Its preferred binding sequence encompasses the tetranucleotide 5'-ATGA.5'-TCAT to which DB293 binds tightly with a strong positive cooperativity. Here we have investigated the influence of the DNA sequence on drug binding using two complementary technical approaches: surface plasmon resonance and DNase I footprinting. The central dinucleotide of the primary ATGA motif was systematically varied to represent all of the eight possible combinations (AXGA and ATYA, where X or Y = A, T, G, or C). Binding affinities for each site were precisely measured by SPR, and the extent of cooperative drug binding was also determined. The sequence recognition process was found to be extremely dependent on the nature of the central dinucleotide pair. Modification of the central TG step decreases binding affinity by a factor varying from 2 to over 500 depending on the base substitution. However, the diminished binding affinity does not affect the unique binding mode. In nearly all cases, the SPR titrations revealed a positive cooperativity in complex formation which reflects the ease of the dication to form stacked dimeric motifs in the DNA minor groove. DNase I footprinting served to identify additional binding sites for DB293 in the context of long DNA sequences offering a large variety of randomly distributed or specifically designed sites. The ATGA motif provided the best receptor for the drug, but lower affinity sequences were also identified. The design of two DNA fragments composed of various targeted tetranucleotide binding sites separated by an "insulator" (nonbinding) sequence allowed us to delineate further the influence of DNA sequence on drug binding and to identify a novel high-affinity site: 5'-ACAA.5'-TTGT. Collectively, the SPR and footprinting results show that the consensus sequence 5'-(A/T)-TG-(A/T) represents the optimal site for cooperative dimerization of the heterocyclic diamidine DB293.  相似文献   

16.
17.
To investigate the effect of incorporation of beta-alanine in alkylating N-methylpyrrole (Py)-N-methylimidazole (Im) polyamide, seco-CBI conjugates 2-8 were synthesized by an Fmoc solid-phase method and subsequent coupling with an alkylating moiety. DNA-alkylating activities of conjugates 2-8 were evaluated by high-resolution denaturing gel electrophoresis with 202-base pair (bp) DNA fragments. Alkylation by conjugates 2 and 3, which have antiparallel pairings of beta-alanine (beta) opposite beta (beta/beta) and Py/beta, occurred mainly at the adenine (A) of the matching sequences, 5'-AGCTCCA-3' (site 1) and 5'-AGCACCA-3' (site 3). However, conjugate 4, with beta/Py, did not show any DNA-alkylating activities. Similarly, conjugate 5, which possessed a Py/Py pair, weakly alkylated the matching sites at micromolar concentrations. Conjugates 6 and 7, which possessed beta/beta and Py/beta pairs, respectively, alkylated at the A of the matching sequences, 5'-ACTACCA-3' (site 2) and 5'-ACAACCA-3' (site 4). In contrast, conjugated 8, with a Py/Py pair, showed lower activity and less alkylated DNA at sites 2 and 4 with mismatched alkylation at site 1 at a higher concentration than that of 6 and 7. These results demonstrate that incorporation of beta-alanine is required for the sequence-specific alkylation by seco-CBI Py-Im conjugates with a seven-base pair sequence.  相似文献   

18.
Inactivation of RNA molecules by sequence-specific endoribonucleolytic cleavage is a subtle mechanism by which cells regulate gene expression. Sequence-specific endoribonucleases can recognize and cleave particular phosphodiester bonds confined within hundreds/thousands of chemically similar bonds. Here, we present a comparative analysis of the mechanisms used by endoribonucleases to select and cleave their target RNA molecules. This analysis is based on the very recent molecular details obtained from the structural and/or biochemical studies of nine sequence-specific ribonucleases that target messenger, ribosomal, and transfer RNA molecules. This analysis shows that despite the absence of sequence homologies and the wide diversity of biological sources (prokaryotes, archaea and eukaryotes), the sequence-specific ribonucleases studied here adopt limited structural folds, catalyze their cleavage reactions using a common chemistry and involve a very limited set of amino acids for both RNA binding and processing.  相似文献   

19.
Three peptide amides, HPRK(Py)(4)HPRK-NH(2) (PyH-12), HPRK(Py)(3)HPRK-NH(2) (PyH-11) and HPRK(Py)(2)HPRK-NH(2) (PyH-10), incorporating two HPRK motifs and various 4-amino-1-methylpyrrole-2-carboxylic acid residues (Py) were synthesized by solid-phase peptide methodology. The binding of these three peptides to a 5'-32P-labeled 158-mer DNA duplex (Watson fragment) and to a 5'-32P-labeled 135-mer DNA duplex (complementary Crick fragment) was investigated by quantitative DNase I footprinting. On the 158-mer Watson strand, the most distinctive DNase I blockages seen with all three peptides occur around positions 105-112 and 76-79, corresponding to the sequences 5'-GAGAAAAT-3' and 5'-CGGT-3', respectively. However, on the complementary Crick strand, only PyH-12 strongly discriminates the 5'-TTT-3' site around positions 108-110 whereas both PyH-11 and PyH-10 have moderate binding around positions 102-112 comprising the sequence 5'-ATTTTCTCCTT-3'. Possible bidentate and single interactions of the side-chain functions and alpha-amino protons of the peptides with DNA bases are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号