首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal laccases are useful for several remarkable transformations, such as bioremediation of polycyclic aromatic hydrocarbons (PAHs), synthesis of phenolic-based resins, oxidation of lignin derivatives and others. Most of these substrates are barely water-soluble, and although polar organic co-solvents may be added to enhance their solubility, transformation rates dramatically decrease due to the negative effect of organic solvents on the protein structure. Laccase from Myceliophthora thermophila variant T2 (MtLT2) has been submitted to laboratory evolution in Saccharomyces cerevisiae with the aim of improving activity and stability in organic co-solvents. Some 4500 clones created by random mutagenesis were screened in two rounds of directed evolution. Libraries were explored under increasing concentrations of acetonitrile and ethanol, and several mutants with improved features were purified and further characterised. Turnover rates of MtLT2 in 30% (v/v) acetonitrile and 50% (v/v) ethanol were increased up to 6.5- and 7.5-fold, respectively. The best variants showed similar rates in 20% (v/v) acetonitrile or 30% (v/v) ethanol as the parent type in aqueous media. Mutant laccases were also tested for the oxidation of anthracene in the presence of 20% (v/v) acetonitrile.  相似文献   

2.
Fungal laccases are useful for several remarkable transformations, such as bioremediation of polycyclic aromatic hydrocarbons (PAHs), synthesis of phenolic-based resins, oxidation of lignin derivatives and others. Most of these substrates are barely water-soluble, and although polar organic co-solvents may be added to enhance their solubility, transformation rates dramatically decrease due to the negative effect of organic solvents on the protein structure. Laccase from Myceliophthora thermophila variant T2 (MtLT2) has been submitted to laboratory evolution in Saccharomyces cerevisiae with the aim of improving activity and stability in organic co-solvents. Some 4500 clones created by random mutagenesis were screened in two rounds of directed evolution. Libraries were explored under increasing concentrations of acetonitrile and ethanol, and several mutants with improved features were purified and further characterised. Turnover rates of MtLT2 in 30% (v/v) acetonitrile and 50% (v/v) ethanol were increased up to 6.5- and 7.5-fold, respectively. The best variants showed similar rates in 20% (v/v) acetonitrile or 30% (v/v) ethanol as the parent type in aqueous media. Mutant laccases were also tested for the oxidation of anthracene in the presence of 20% (v/v) acetonitrile.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAH) are widespread in methane-rich subsurface environments, such as oil reservoirs and fuel-contaminated aquifers; however, little is known about the biodegradation of these compounds under methanogenic conditions. To assess the metabolism of PAH in the absence of electron acceptors, a crude oil-degrading methanogenic enrichment culture was tested for the ability to biodegrade naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 2, 6-dimethylnaphthalene (2, 6-diMN). When methane was measured as an indicator of metabolism, nearly 400 μmol of methane was produced in the 2-MN- and 2, 6-diMN-amended cultures relative to substrate-unamended controls, which is close to the amount of methane stoichiometrically predicted based on the amount of substrate added (51-56 μmol). In contrast, no substantial methane was produced in the naphthalene- and 1-MN-amended enrichments. In time course experiments, metabolite analysis of enrichments containing 2-MN and 2, 6-diMN revealed the formation of 2-naphthoic acid and 6-methyl-2-naphthoic acid, respectively. Microbial community analysis by 454 pyrosequencing revealed that these PAH-utilizing enrichments were dominated by archaeal members most closely affiliated with Methanosaeta and Methanoculleus species and bacterial members most closely related to the Clostridiaceae, suggesting that these organisms play an important role in the methanogenic metabolism of the substituted naphthalenes in these cultures.  相似文献   

4.
Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons   总被引:5,自引:0,他引:5  
The kinetics of biodegradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture were determined in a creosote-contaminated soil and in a pristine soil. A competitive-inhibition model was able to represent the kinetics of degradation of PAHs from the creosote-contaminated soil, from the lag phase through to active degradation, but not data from pristine soil with the same PAHs alone and in mixtures. The presence of phenanthrene introduced a lag phase of 4.5 days in the degradation of fluoranthene and 5 days for chrysene. Rapid degradation of pyrene followed a lag phase of circa 5 days, regardless of the presence of other PAHs. These results show that even when kinetics of PAH degradation by mixed cultures appear to follow competitive-inhibition kinetics, the underlying mechanisms may be more complex.  相似文献   

5.
多环芳烃的真菌漆酶转化及污染土壤修复技术   总被引:3,自引:0,他引:3  
漆酶可以转化多种有机污染物,在环境保护领域具有广泛的应用潜力。二十年来,通过多学科协同研究,对真菌漆酶转化多环芳烃的机制、特征等各方面的认识不断深入。基于漆酶等真菌木质素分解酶的污染土壤修复技术不断发展,并逐渐走向田间应用。本文首先介绍了真菌漆酶的一般作用机制与多环芳烃转化特征,结合我们的相关研究提出了漆酶作用下多环芳烃在土壤中的迁移模式;其次介绍了利用漆酶氧化原理修复污染农田土壤的潜力,着重对利用农业废弃物进行真菌生物刺激的修复实践进行了评述;最后,就漆酶转化多环芳烃基础研究中的若干重要问题进行了思考,并展望了真菌及其漆酶系统在污染土壤修复应用中的发展方向。  相似文献   

6.
The objectives of this study were to isolate and evaluate microorganisms with the ability to degrade high molecular weight polycyclic aromatic hydrocarbons (PAHs) in the presence of synthetic surfactants. Stenotrophomonas maltophilia VUN 10,010, isolated from PAH-contaminated soil, utilized pyrene as a sole carbon and energy source and also degraded other high molecular weight PAHs containing up to seven benzene rings. Various synthetic surfactants were tested for their ability to improve the PAH degradation rate of strain VUN 10,010. Anionic and cationic surfactants were highly toxic to this strain, and the Tween series was used as a growth substrate. Five nonionic surfactants (Brij 35, Igepal CA-630, Triton X-100, Tergitol NP-10, and Tyloxapol) were not utilized by, and were less toxic to, strain VUN 10,010. MSR and log Km values were determined for fluoranthene, pyrene, and benzo[a]pyrene in the presence of these nonionic surfactants and their apparent solubility was increased by a minimum of 250-fold in the presence of 10 g L-1 of all surfactants. The rate of pyrene degradation by strain VUN 10,010 was enhanced by the addition of four of the nonionic surfactants (5-10 g L-1); however, 5 g L-1 Igepal CA-630 inhibited pyrene degradation and microbial growth. The specific growth rate of VUN 10,010 on pyrene was increased by 67% in the presence of 10 g L-1 Brij 35 or Tergitol NP-10. The addition of Brij 35 and Tergitol NP-10 to media containing a single high molecular weight PAH (four and five benzene rings) as the sole carbon source increased the maximum specific PAH degradation rate and decreased the lag period normally seen for PAH degradation. The addition of Tergitol NP-10 to VUN 10,010 cultures which contained a PAH mixture (three to seven benzene rings) substantially improved the overall degradation rate of each PAH and increased the specific growth rate of VUN 10,010 by 30%. Evaluation of the use of VUN 10,010 for degrading high molecular weight PAHs in leachates from surfactant-flushed, weathered, PAH-contaminated sites is warranted. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

7.
细菌降解低分子量多环芳烃的研究进展   总被引:2,自引:0,他引:2  
周子康  崔洁  许平  唐鸿志 《生物工程学报》2019,35(11):2069-2080
具有"三致"效应的多环芳烃污染造成了巨大的环境危害,威胁人类健康和生存。目前能够降解低分子量多环芳烃的细菌已有广泛的研究。细菌通过多层次的调控分析和适应性进化提高它们的降解能力。本文基于国内外文献调研,简要总结了生物修复在低分子量多环芳烃降解领域的研究进展。拟通过多层次的调控分析和适应性进化来产生多种分解代谢途径,为生物降解能力强化的未来降解技术提供支撑。  相似文献   

8.
污染土壤中多环芳烃生物降解的调控研究   总被引:23,自引:6,他引:17  
选用温度、湿度、表面活性剂TW80和CNP比4个因素为调控因子,采用正交法进行周期为150天的实验研究.结果表明,30天后,土壤中PAHs的降解率可达44.5~74.6%,60天后,达70.4~93.7%,降解率的不同与调控条件显著相关.在此期间,降解最佳条件为40℃,湿度25%,CNP比为120101,TW80分别为200~500mg·kg-1.实验结束时,土壤中PAHs的降解率达91.2~99.8%.降解的最佳条件是40℃,湿度15%.经R值判别表明,不同时期各因子对PAHs降解影响有所不同.温度对PAHs降解影响较大,表面活性剂对土壤中PAHs的生物降解有调控作用.  相似文献   

9.
The bioremediation of polycyclic aromatic hydrocarbon (PAH)‐contaminated sites is not running smoothly, because of the lower activity of PAH‐degrading bacteria in actual bioremediation applications. The phenomenon of “viable but nonculturable” (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH‐degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)‐contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB‐degrading bacteria, scanty information is available on the VBNC bacteria in PAH‐contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH‐biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH‐contaminated sites. This mini‐review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation.

Significance and Impact of the Study

As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH‐degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro‐organisms in the VBNC state from the perspective of environmental functions.  相似文献   

10.
A study was conducted to investigate the feasibilityof a combined treatment (i.e., ozonation andbiodegradation) to overcome the inherent bacterialbioavailability limitation, and hence bioremediationlimitation, of polycyclic aromatic hydrocarbons insoil. Ozonation was very efficient in the removal ofnaphthalene, fluorene, phenanthrene, and anthracene,but not for pyrene, chrysene, and benzo(a)pyrene fromsoil freshly spiked with the hydrocarbons. A similarresult was obtained from coal tar-contaminated soil.Elimination of polycyclic aromatic hydrocarbonsincreased appreciably in sand containing 0.03%organic carbon, indicating the adverse effect oforganic carbon on the efficiency of ozone treatment.In spiked and coal tar-contaminated soils, ozonationfollowed by biodegradation significantly increased thedegradation of various polycyclic aromatichydrocarbons including chrysene and benzo(a)pyrenewhich were not degraded by the test bacterialconsortium alone. In particular, the effect of thecombined treatment was more pronounced in coaltar-contaminated soil than in sterile soil spiked withhydrocarbons, probably due to the augmented biologicalactivity of the introduced consortium. The resultssuggest that a combined treatment including ozonationand biodegradation may be a promising bioremediationtechnology in soil contaminated with mixtures ofpolycyclic aromatic hydrocarbons such as formermanufactured gas plant sites.  相似文献   

11.
The biodegradation of aromatic hydrocarbons by bacteria   总被引:33,自引:0,他引:33  
Mark R. Smith 《Biodegradation》1990,1(2-3):191-206
Aromatic compounds of both natural and man-made sources abound in the environment. The degradation of such chemicals is mainly accomplished by microorganisms. This review provides key background information but centres on recent developments in the bacterial degradation of selected man-made aromatic compounds. An aromatic compound can only be considered to be biodegraded if the ring undergoes cleavage, and this is taken as the major criteria for inclusion in this review (although the exact nature of the enzymic ring-cleavage has not been confirmed in all cases discussed).The biodegradation of benzene, certain arenes, biphenyl and selected fused aromatic hydrocarbons, by single bacterial isolates, are dealt with in detail.  相似文献   

12.
The aim of this work has been to study the substrate specificity of two aromatic peroxygenases concerning polyaromatic compounds of different size and structure as well as to identify the key metabolites of their oxidation. Thus, we report here on new pathways and reactions for 2-methylnaphthalene, 1-methylnaphthalene, dibenzofuran, fluorene, phenanthrene, anthracene and pyrene catalyzed by peroxygenases from Agrocybe aegerita and Coprinellus radians (abbreviated as AaP and CrP). AaP hydroxylated the aromatic rings of all substrates tested at different positions, whereas CrP showed a limited capacity for aromatic ring-hydroxylation and did not hydroxylate phenanthrene but preferably oxygenated fluorene at the non-aromatic C9-carbon and methylnaphthalenes at the side chain. The results demonstrate for the first time the broad substrate specificity of fungal peroxygenases for polyaromatic compounds, and they are discussed in terms of their biocatalytic and environmental implications.  相似文献   

13.
Detoxification of polycyclic aromatic hydrocarbons by fungi   总被引:8,自引:0,他引:8  
Summary The polycyclic aromatic hydrocarbons (PAHs) are a group of hazardous environmental pollutants, many of which are acutely toxic, mutagenic, or carcinogenic. A diverse group of fungi, includingAspergillus ochraceus, Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, andSyncephalastrum racemosum, have the ability to oxidize PAHs. The PAHs anthracene, benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, as well as several methyl-, nitro-, and fluoro-substituted PAHs, are metabolized by one or more of these fungi. Unsubstituted PAHs are oxidized initially to arene oxides,trans-dihydrodiols, phenols, quinones, and tetralones. Phenols andtrans-dihydrodiols may be further metabolized, and thus detoxified, by conjugation with sulfate, glucuronic acid, glucose, or xylose. Although dihydrodiol epoxides and other mutagenic and carcinogenic compounds have been detected as minor fungal metabolites of a few PAHs, most transformations performed by fungi reduce the mutagenicity and thus detoxify the PAHs.  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0–20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.  相似文献   

15.
Biodegradation of polycyclic aromatic hydrocarbons   总被引:67,自引:0,他引:67  
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.  相似文献   

16.
The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs—silicone oil–water—with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.  相似文献   

17.
Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala   总被引:3,自引:0,他引:3  
Pichia anomala 2.2540, isolated from soil contaminated by crude oil, degraded naphthalene, dibenzothiophene, phenanthrene and chrysene, both singly and in combination. The yeast degraded 4.5 mg naphthalene l(-1) within 24 h. Phenanthrene was degraded after a lag of 24 h. When a mixture of all four polycyclic aromatic hydrocarbons was treated at either 0.1-1.6 mg l(-1) or 3.1-5.3 mg l(-1), naphthalene was completely degraded first within 24 h, followed by phenanthrene and dibenzothiophene after 48 h. Chrysene, which remained in the mixture even after 96 h, could be degraded along with naphthalene. Chrysene at 0.7 and 1 mg l(-1), in the presence of 4.3 and 65 mg naphthalene l(-1), respectively, was removed within 96 h.  相似文献   

18.
19.
20.
Polycyclic aromatic hydrocarbons (PAHs), aryl hydrocarbon receptor (AHR) ligands, induce atherogenesis. Liver X receptor (LXR) alpha is known to be involved in the control of cholesterol homeostasis. Thus, the purpose of this study was to investigate the effects of 3-methlycholanthrene (MC), one of the PAHs, on LXRalpha-mediated signal transductions. We found that expression of mRNAs for ATP binding cassette A1, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase was suppressed by treatment of HepG2 cells with MC. A luciferase reporter assay revealed that LXRalpha- and SREBP-1c-mediated transactivations were inhibited by MC via AHR. Based on these lines of evidence, we propose that down-regulation of the LXRalpha-regulated genes by PAHs is one of the causes responsible for atherosclerosis induced by PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号