首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

2.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

3.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson’s disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

4.
There is mounting evidence implicating the accumulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. Recently, considerable attention has been focused on identifying naturally occurring antioxidants that are able to reduce excess ROS and RNS, thereby protecting against oxidative stress and neuron death. The present study investigated the possible protective effects of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), which is present in grapes and other foods, on hydrogen-peroxide- and peroxynitrite-induced oxidative cell death. PC12 rat pheochromocytoma (PC12) cells treated with hydrogen peroxide or SIN-1 (a peroxynitrite-generating compound) exhibited apoptotic death, as determined by nucleus condensation and cleavage of poly(ADP-ribose)polymerase (PARP). Piceatannol treatment attenuated hydrogen-peroxide- and peroxynitrite-induced cytotoxicity, apoptotic features, PARP cleavage and intracellular ROS and RNS accumulation. Treatment of PC12 cells with hydrogen peroxide or SIN-1 led to down-regulation of Bcl-X(L) and activation of caspase-3 and -8, which were also inhibited by piceatannol treatment. Hydrogen peroxide or SIN-1 treatment induced phosphorylation of the c-Jun-N-terminal kinase (JNK), which was inhibited by piceatannol treatment. Moreover, SP600125 (a JNK inhibitor) significantly inhibited hydrogen-peroxide- and peroxynitrite-induced PC12 cell death, revealing inactivation of the JNK pathway as a possible molecular mechanism for the protective effects of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells. Collectively, these findings suggest that the protective effect of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells is associated with blocking the activation of JNK and the down-regulation of Bcl-XL.  相似文献   

5.
The aim of this study was to investigate changes in protein profiles during the early phase of dopaminergic neuronal death using two-dimensional gel electrophoresis in conjunction with mass spectrometry. Several protein spots were identified whose expression was significantly altered following treatment of MN9D dopaminergic neuronal cells with 6-hydroxydopamine (6-OHDA). In particular, we detected oxidative modification of thioredoxin-dependent peroxidases (peroxiredoxins; PRX) in treated MN9D cells. Oxidative modification of PRX induced by 6-OHDA was blocked in the presence of N-acetylcysteine, suggesting that reactive oxygen species (ROS) generated by 6-OHDA induce oxidation of PRX. These findings were confirmed in primary cultures of mesencephalic neurons and in rat brain injected stereotaxically. Overexpression of PRX1 in MN9D cells (MN9D/PRX1) exerted neuroprotective effects against death induced by 6-OHDA through scavenging of ROS. Consequently, generation of both superoxide anion and hydrogen peroxide following 6-OHDA treatment was decreased in MN9D/PRX1. Furthermore, overexpression of PRX1 protected cells against 6-OHDA-induced activation of p38 MAPK and subsequent activation of caspase-3. In contrast, 6-OHDA-induced apoptotic death signals were enhanced by RNA interference-targeted reduction of PRX1 in MN9D cells. Taken together, our data suggest that the redox state of PRX may be intimately involved in 6-OHDA-induced dopaminergic neuronal cell death and also provide a molecular mechanism by which PRX1 exerts a protective role in experimental models of Parkinson disease.  相似文献   

6.
The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. We therefore investigated if baicalein, a natural antioxidant component of Scutellaria baicalensis, could attenuate ROS generation and cell death induced by doxorubicin. Using an established chick cardiomyocyte model, doxorubicin (10 μM) increased cell death in a concentration- and time-dependent manner. ROS generation was increased in a dose-response fashion and associated with loss of mitochondrial membrane potential. Doxorubicin also augmented DNA fragmentation and increased the phosphorylation of ROS-sensitive pro-apoptotic kinase c-Jun N-terminal kinase (JNK). Adjunct treatment of baicalein (25 μM) and doxorubicin for 24 h significantly reduced both ROS generation (587 ± 89 a.u. vs. 932 a.u. ± 121 a.u., P < 0.01) and cell death (30.6 ± 5.1% vs. 46.8 ± 8.3%, P < 0.01). The dissipated mitochondrial potential and increased DNA fragmentation were also ameliorated. Along with the reduction of ROS and apoptosis, baicalein attenuated phosphorylation of JNK induced by doxorubicin (1.7 ± 0.3 vs. 3.0 ± 0.4-fold, P < 0.05). Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 μM; 24 h) reduced JNK phosphorylation and enhanced cell survival, suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Importantly, concurrent baicalein treatment did not interfere with the anti-proliferative effects of doxorubicin in human breast cancer MCF-7 cells. In conclusion, baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy.  相似文献   

7.
Pyrroloquinoline quinone (PQQ), which is an essential nutrient, has been shown to act as an antioxidant. Reactive oxygen species (ROS) are thought to be responsible for neurotoxicity caused by the neurotoxin 6-hydroxydopamine (6-OHDA). In this study, we investigated the ability of PQQ to protect against 6-OHDA-induced neurotoxicity using human neuroblastoma SH-SY5Y. When SH-SY5Y cells were exposed to 6-OHDA in the presence of PQQ, PQQ prevented 6-OHDA-induced cell death and DNA fragmentation. Flow cytometry analysis using the ROS-sensitive fluorescence probe, dihydroethidium, revealed that PQQ reduced elevation of 6-OHDA-induced intracellular ROS. In contrast to PQQ, antioxidant vitamins, ascorbic acid and α-tocopherol, had no protective effect. Moreover, we showed that PQQ effectively scavenged superoxide, compared to the antioxidant vitamins. Therefore, our results suggest the protective effect of PQQ on 6-OHDA-induced neurotoxicity is involved, at least in part, in its function as a scavenger of ROS, especially superoxide.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

9.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

10.
Hepatocytes exposed to an oxidative stressor such as hydrogen peroxide (H2O2) are potentially sensitized to cell death; thus, reactive oxygen species (ROS) are considered to be critical mediators of liver damage. Zingiber officinale Roscoe (ZO), also known as ginger, is cultivated commercially in China, India, Korea, and other parts of the world. In addition, it is used as a spice and flavoring agent and is also purported to possess a number of medicinal properties. In the present study, we examined the protective effect of ZO against cell damage caused by H2O2-induced oxidative stress. ZO reduced H2O2-induced apoptotic signals and the levels of intracellular ROS. ZO pretreatment also increased the phosphorylation of c-Jun, and JNK kinase. The expression of heme oxygenase-1 (HO-1) and heat shock protein 72 (HSP72) were increased by ZO pretreatment more than H2O2 treatment. In addition, siRNA-mediated knockdown of HO-1 and HSP72 decreased protective effect of ZO pretreatment. Our data suggest that ZO decreases ROS levels and the expressions of HO-1 and HSP72 are involved in the hepatocyte protective function of ZO against H2O2.  相似文献   

11.
Acacetin (5,7-dihydroxy-4′-methoxyflavone), a flavonoid compound isolated from Flos Chrysanthemi Indici, chrysanthemum, safflower, and Calamintha and Linaria species has been shown to have anti-cancer activity, indicating its potential clinical value in cancer treatment. In this study, we sought to study the potentials of acacetin in preventing human dopaminergic neuronal death via inhibition of 6-hydroxydopamine (6-OHDA)-induced neuronal cell death in the SH-SY5Y cells. Our results suggest that acacetin was effective in preventing 6-OHDA-induced neuronal cell death through regulation of mitochondrial-mediated cascade apoptotic cell death. Pretreatment with acacetin significantly inhibited neurotoxicity and neuronal cell death through reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) dysfunction. Acacetin also markedly acted on key molecules in apoptotic cell death pathways and reduced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β). These results suggested that acacetin could inhibit 6-OHDA-induced neuronal cell death originating from ROS-mediated cascade apoptosis pathway. Thus, the results of our study suggest that acacetin is a potent therapeutic agent for PD progression.  相似文献   

12.
This study examined the effect of acetylcholine (ACh) on the hypoxia-induced apoptosis of mouse embryonic stem (ES) cells. Hypoxia (60 h) decreased both the cell viability and level of [3H] thymidine incorporation, which were prevented by a pretreatment with ACh. However, the atropine (ACh receptor [AChR] inhibitor) treatment blocked the protective effect of ACh. Hypoxia (90 min) increased the intracellular level of reactive oxygen species (ROS). On the other hand, ACh inhibited the hypoxia-induced increase in ROS, which was blocked by an atropine treatment. Subsequently, the hypoxia-induced ROS increased the level of p38 mitogen activated protein kinase (MAPK) and Jun-N-terminal kinase (JNK) phosphorylation, which were inhibited by the ACh pretreatment. Moreover, hypoxic exposure (90 min) increased the level of nuclear factor-κB (NF-κB) phosphorylation, which was blocked by a pretreatment with SB 203580 (p38 MAPK inhibitor) or SP 600125 (JNK inhibitor). However, hypoxia (60 h) decreased the protein levels of Bcl-2 and c-IAPs (cellular inhibitor of apoptosis proteins) but increased the level of caspase-3 activation. All these effects were inhibited by a pretreatment with ACh. In conclusion, ACh prevented the hypoxia-induced apoptosis of mouse ES cells by inhibiting the ROS-mediated p38 MAPK and JNK activation as well as the regulation of Bcl-2, c-IAPs, and caspase-3. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Green tea polyphenols have aroused considerable attention in recent years for preventing oxidative stress related diseases including cancer, cardiovascular disease, and degenerative disease. Neurodegenerative diseases are cellular redox status dysfunction related diseases. The present study investigated the different effects of the five main components of green tea polyphenols on 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells, the in vitro model of Parkinson's disease (PD). When the cells were treated with five catechins respectively for 30 min before exposure to 6-OHDA, (-)-epigallocatechins gallate (EGCG) and (-)-epicatechin gallate (ECG) in 50-200 microM had obvious concentration-dependent protective effects on cell viability, while (-)-epicatechin (EC), (+)-catechin ((+)-C), and (-)-epigallocatechin (EGC) had almost no protective effects. The five catechins also showed the same pattern described above of the different effects against 6-OHDA-induced cell apoptotic characteristics as analyzed by cell viability, fluorescence microscopy, flow cytometry, and DNA fragment electrophoresis methods. The present results indicated that 200 microM EGCG or ECG led to significant inhibition against typical apoptotic characteristics of PC12 cells, while other catechins had little protective effect against 6-OHDA-induced cell death. Therefore, the classified protective effects of the five catechins were in the order ECG> or = EGCG>EC> or = (+)-C>EGC. The antiapoptotic activities appear to be structurally related to the 3-gallate group of green tea polyphenols. The present data indicate that EGCG and ECG might be potent neuroprotective agents for PD.  相似文献   

14.
Curcumin as an anticancer agent was investigated in regards to its ability to regulate the switching of cancer cells from survival to necrotic cell death. At higher concentrations, curcumin induced ROS production leading to JNK and p38 phosphorylation in DU-145 prostate cancer cells. Of the MAP kinases, ERK or p38/JNK were phosphorylated earlier during curcumin treatment, and were responsible for curcumin-induced cell survival at early time of treatment with the help of phosphorylated Akt, while significant amounts of ROS production in later periods stimulated cell death with caspase degradation. In addition to autophagic signaling, necrosis was dominant with little apoptotic cell death. Caspase activation was completely prohibited by procaspase degradation, which contributed to curcumin-induced early necrosis. At the later incubation period (24 h), cytotoxicity caused by curcumin peaked, at which time survival or proliferation signals, such as phosphorylated Akt and phosphorylated ERK, was almost completely diminished. Curcumin-induced ROS were shown to function, biphasically depending on the incubation period; facilitating survival, in the earlier incubation period, and necrotic death in the later. Based on all of these results, we concluded that curcumin contributes to a complex signaling network, affecting cell survival and necrotic cell death, which in turn could inhibit apoptotic cell death.  相似文献   

15.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

16.
1-{3-[2-(1-Benzothiophen-5-yl)ethoxy]propyl}-3-azetidinol maleate (T-817MA), a novel neurotrophic agent, protects against amyloid-beta peptide- or hydrogen peroxide-induced neuronal death. The exact mechanism of the neuroprotection is not known. This study examines the effects of T-817MA on oxidative stress-induced cytotoxicity in primary rat cortical neurons. Treatment with the NO donor sodium nitoroprusside (SNP) at 300microM decreased cell viability and induced apoptotic cell death. SNP-induced neuronal toxicity was accompanied by a decrease in mitochondrial transmembrane potential without an increase in the expression of CHOP and GRP78 mRNAs, endoplasmic reticulum stress makers. T-817MA at 0.1 and 1microM attenuated the neurotoxicity in a dose-dependent way and the protective effect required pretreatment for more than 8h. T-817MA attenuated SNP-induced decrease in mitochondrial transmembrane potential. In addition, the agent reduced SNP-induced increase in mitochondrial reactive oxygen species (ROS) production. The effects of T-817MA on SNP-induced decrease in cell viability and SNP-induced increase in mitochondrial ROS production were blocked by cycloheximide. These results suggest that T-817MA improves SNP-induced mitochondrial dysfunction in cortical neurons in a newly synthesized protein-mediated mechanism and this effect contributes to its neuroprotective effect.  相似文献   

17.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

18.
The liver is an important target tissue of cadmium. The compound O2-vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2 diolate (V-PYRRO/NO) is a liver-selective nitric oxide (NO) prodrug that is metabolized by hepatic P450 enzymes to release NO in hepatocytes. In vivo, V-PYRRO/NO can protect against the toxicity of various hepatotoxicants, including cadmium. Since NO is an effective vasodilator, whether this protective effect against cadmium toxicity is at the level of the hepatic vascular system or actually within the liver cells has not been defined. Thus, we studied the effects of V-PYRRO/NO pretreatment on cadmium-induced toxicity and apoptosis in cultured rat liver epithelial (TRL 1215) cells. Cells were pretreated with V-PYRRO/NO at 500 or 1000 microM for up to 24 h, then exposed to cadmium (as CdCl2) for additional 24 h and cytotoxicity was measured. Cadmium was significantly less cytotoxic in V-PYRRO/NO (1000 microM) pretreated cells (LC50=6.1+/-0.6 microM) compared to control cells (LC50=3.5+/-0.4 microM). TRL 1215 cells acted upon the prodrug to release NO, producing nitrite levels in the extracellular media after 24 h of exposure to 500 or 1000 microM V-PYRRO/NO measured at 87.0+/-4.2 and 324+/-14.8 microM, respectively, compared to basal levels of 7.70+/-0.46 microM. V-PYRRO/NO alone produced small increases in metallothionein (MT), a metal-binding protein associated with cadmium tolerance. However, V-PYRRO/NO pretreatment greatly enhanced cadmium induction of MT. V-PYRRO/NO pretreatment also markedly reduced apoptotic cell death induced by cadmium (5 microM), apparently by blocking cadmium-induced activation of the c-Jun N-terminal kinase (JNK) pathway. Thus, the prodrug, V-PYRRO/NO, protects against the adverse effects of cadmium directly within rat liver cells apparently through generation of NO and, at least in part, by facilitation of cadmium-induced MT synthesis.  相似文献   

19.
Our results provide evidence that 6-hydroxydopamine induced, after auto-oxidation, toxic levels of hydrogen peroxide (H2O2) that caused bovine chromaffin cell toxicity and death. 6-Hydroxydopamine (6-OHDA) treatment markedly reduced, in a dose-response fashion, chromaffin cell viability. Cell death was accompanied by cell shrinkage, nuclear condensation and DNA degradation. Under our experimental conditions, 6-OHDA auto-oxidation formed quinones and reactive oxygen species (ROS) that mainly contributed to 6-OHDA-induced cytotoxicity in bovine chromaffin cells. Accordingly, different antioxidants, including catalase, vitamin E, Mn(IIItetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or ascorbic acid, provided protection against 6-OHDA-induced toxicity. Further evidence that 6-OHDA induces oxidative stress is provided by the fact that this compound decreased total mitochondrial reduced NAD(P)H levels. Our results also suggest that mitochondrial swelling and caspase activation do not play a direct role in 6-OHDA-induced death in bovine chromaffin cells.  相似文献   

20.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号