首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin activates the long form of the leptin receptor (LRb) to control feeding and neuroendocrine function and thus regulate adiposity. While adiposity influences insulin sensitivity, leptin also regulates glucose homeostasis independently of energy balance. Disruption of the LRb/STAT3 signal in s/s mice results in hyperphagia, neuroendocrine dysfunction, and obesity similar to LRb null db/db mice. Insulin resistance and glucose intolerance are improved in s/s compared to db/db animals, however, suggesting that LRb/STAT3-independent signals may contribute to the regulation of glucose homeostasis by leptin. Indeed, caloric restriction normalized glycemic control in s/s animals, but db/db mice of similar weight and adiposity remained hyperglycemic. These differences in glucose homeostasis were not attributable to differences in insulin production between s/s and db/db animals but rather to decreased insulin resistance in s/s mice. Thus, in addition to LRb/STAT3-mediated adiposity signals, non-LRb/STAT3 leptin signals mediate an important adiposity-independent role in promoting glycemic control.  相似文献   

2.
One hypothesis for the regulation of total body fat suggests that leptin is a lipostatic feedback signal that acts at brain sites involved in regulation of energy balance. The importance of leptin in recovery from partial surgical lipectomy was tested by performing bilateral epididymal lipectomy or sham surgery on wild-type and leptin-deficient ob/ob mice. Eight weeks later, nonexcised pads of lipectomized mice were increased but total carcass fat was lower than in sham-operated ob/ob mice. In experiment 2, ob/ob mice, wild-type mice, and two db/db mutants, C57BL/6J db(Lepr)/db(Lepr) (BL/6J) mice possessing short-form and circulating leptin receptors and C57BL/6J db(3J)/db(3J) (BL/3J) mice expressing only circulating receptors, were lipectomized or sham operated. Sixteen weeks later, body mass and carcass lipid were not different between sham and lipectomized ob/ob mice, wild-type mice, or BL/6J db/db mice, whereas there was incomplete (decreased carcass fat) but suggestive recovery (increased retroperitoneal fat mass and cell number) in lipectomized BL/3J db/db mice. These data indicate that leptin is not required for the regulation of total body fat.  相似文献   

3.
Obese, diabetic C57BL/Ks db/db mice that lack the long-form leptin receptor exhibit no decrease in body weight or food intake when treated with leptin. Here we compared responses to leptin in two strains of db/db mice: C57BL/6J mice that are hyperglycemic and hyperinsulinemic and C57BL/Ks that are hyperglycemic and normo- or hypoinsulinemic. Chronic intraperitoneal infusion of 10 microgram leptin/day partially reversed hyperglycemia in C57BL/6J male mice but exaggerated the diabetic state of female mice. Bolus intraperitoneal injections of 40 microgram leptin/day did not effect glucose in either strain of male db/db mice, whereas chronic intraperitoneal infusion of 20 microgram leptin/day significantly reduced fasting blood glucose in male mice from both strains, especially C57BL/6J mice. Food intake, body weight, rectal temperature, and body fat did not change. Chronic intraperitoneal infusion of 10 microgram leptin/day significantly reduced body fat in lean db/+ C57BL/6J but not in C57BL/Ks mice. Thus peripherally administered leptin is active in mice that have only short-form leptin receptors, and the response is dependent on the method of leptin administration and the background strain.  相似文献   

4.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

5.
Leptin-deficient ob/ob and leptin receptor (Ob-rb)-deficient db/db mice display a marked thymic atrophy and exhibit defective immune responses. Lymphocytes express leptin receptors and leptin exerts direct effects on T cells in vitro. In addition, ob/ob and db/db mice display multiple neuroendocrine and metabolic defects, through which leptin deficiency may indirectly affect the immune system in vivo. To study the relative contributions of direct and indirect effects of leptin on the immune system in a normal environment, we generated bone marrow chimeras (BMCs) by transplantation of leptin receptor-deficient db/db, or control db/+, bone marrow cells into wild-type (WT) recipients. The size and cellularity of the thymus, as well as cellular and humoral immune responses, were similar in db/db to WT and db/+ to WT BMCs. The immune phenotype of db/db mice is thus not explained by a cell autonomous defect of db/db lymphocytes. Conversely, thymus weight and cell number were decreased in the reverse graft setting in WT to db/db BMCs, indicating that expression of the leptin receptor in the environment is important for T cell development. Finally, normal thymocyte development occurred in fetal db/db thymi transplanted into WT hosts, indicating that direct effects of leptin are not required locally in the thymic microenvironment. In conclusion, direct effects of leptin on bone marrow-derived cells and on thymic stromal cells are not necessary for T lymphocyte maturation in normal mice. In contrast, leptin receptor deficiency affects the immune system indirectly via changes in the systemic environment.  相似文献   

6.
Homozygous obese db/db (BKS-Lepr(db) and ob/ob (B6-Lep(ob)) mice were treated for 14 days with a continuous infusion of a fat emulsion (controls) or loaded with oleoyl-estrone at doses of 12.5 and 50 nmol/g x d using surgically inserted osmotic minipumps. Treatment with oleoyl-estrone resulted in a marked decrease in body weight in both strains, compared with the unchecked growth of controls. In db/db mice, plasma urea and insulin, as well as liver lipid decreased with treatment. In ob/ob mice, the effect on insulin was more marked, in parallel with higher plasma lipids pointing to increased fat mobilisation. The results suggest that oleoyl-estrone effects on body fat reserves and insulin resistance are not mediated by leptin, since ob/ob mice lack this hormone and in the db/db it is present but cannot induce effects because of defective leptin receptors; in both cases oleoyl-estrone treatment lowers body weight.  相似文献   

7.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

8.
Genetic predisposition and environmental challenges interact to determine individual vulnerability to obesity and type 2 diabetes. We previously established a mouse model of chronic subordination stress-induced hyperphagia, obesity, metabolic like-syndrome and insulin resistance in the presence of a high-fat diet. However, it remains to be established if social stress could also aggravate glucose intolerance in subjects genetically predisposed to develop obesity and type 2 diabetes. To answer this question, we subjected genetically obese mice due to deficiency of the leptin receptor (db/db strain) to chronic subordination stress. Over five weeks, subordination stress in db/db mice led to persistent hyperphagia, hyperglycemia and exacerbated glucose intolerance altogether suggestive of an aggravated disorder when compared to controls. On the contrary, body weight and fat mass were similarly affected in stressed and control mice likely due to the hyperactivity shown by subordinate mice. Stressed db/db mice also showed increased plasma inflammatory markers. Altogether our results suggest that chronic stress can aggravate glucose intolerance but not obesity in genetically predisposed subjects on the basis of a disrupted leptin circuitry.  相似文献   

9.
Leptin deficiency produces a phenotype of obesity, diabetes, and infertility in the ob/ob mouse. In humans, leptin deficiency occurs in some cases of congenital obesity and in lipodystrophic disorders characterized by reduced adipose tissue and insulin resistance. Cutaneous gene therapy is considered an attractive potential method to correct circulating protein deficiencies, since gene-transferred human keratinocytes can produce and secrete gene products with systemic action. However, no studies showing correction of a systemic defect have been reported. We report the successful correction of leptin deficiency using cutaneous gene therapy in the ob/ob mouse model. As a feasibility approach, skin explants from transgenic mice overexpressing leptin were grafted on immunodeficient ob/ob mice. One month later, recipient mice reached body weight values of lean animals. Other biochemical and clinical parameters were also normalized. In a second human gene therapy approach, a retroviral vector encoding both leptin and EGFP cDNAs was used to transduce HK and, epithelial grafts enriched in high leptin-producing HK were transplanted to immunosuppressed ob/ob mice. HK-derived leptin induced body weight reduction after a drop in blood glucose and food intake. Leptin replacement through genetically engineered HK grafts provides a valuable therapeutic alternative for permanent treatment of human leptin deficiency conditions.  相似文献   

10.
Palatable food is rich in fat and/or sucrose. In this study we examined the long-term effects of such diets on food intake, body weight, adiposity and circulating levels of the satiety peptide leptin and the hunger peptide ghrelin. The experiments involved rats and mice and lasted 5 weeks. In rats, we examined the effect of diets rich in fat and/or sucrose and in mice the effect of a high fat diet with or without sucrose in the drinking water. Animals fed with the palatable diets had a larger intake of calories, gained more weight and became more adipose than animals fed standard rat chow. Fasted animals are known to have low serum leptin and high serum ghrelin and to display elevated serum leptin and lowered serum ghrelin postprandially. With time, a sucrose-rich diet was found to raise the fasting level of leptin and to lower the fasting level of ghrelin in rats. A fat-rich diet suppressed serum ghrelin without affecting serum leptin; high sucrose and high fat in combination greatly reduced serum ghrelin and raised serum leptin in the fasted state. The mRNA expression of leptin in the rat stomach was up-regulated by sucrose-rich (but not by fat-rich) diets, whereas the expression of ghrelin seemed not to be affected by the palatable diets. Mice responded to sucrose in the drinking water with elevated serum leptin (fasted state) and to all palatable diets with low serum ghrelin. The expression of both leptin and ghrelin mRNA in the stomach was suppressed in fasted mice that had received a high fat diet for 5 weeks. We conclude that the expression of leptin mRNA in stomach and the concentration of leptin in serum were elevated in response to sucrose-rich rather than fat-rich diets, linking leptin with sucrose metabolism. In contrast, the expression of ghrelin and the serum ghrelin concentration were suppressed by all palatable diets, sucrose and fat alike. In view of the increased body weight and adiposity neither elevated leptin nor suppressed ghrelin were able to control/restrain the overeating that is associated with palatable diets.  相似文献   

11.
The mechanisms underlying leptin resistance are still being defined. We report here the presence in human blood of several serum leptin-interacting proteins (SLIPs), isolated by leptin-affinity chromatography and identified by mass spectrometry and immunochemical analysis. We confirmed that one of the major SLIPs is C-reactive protein (CRP). In vitro, human CRP directly inhibits the binding of leptin to its receptors and blocks its ability to signal in cultured cells. In vivo, infusion of human CRP into ob/ob mice blocked the effects of leptin upon satiety and weight reduction. In mice that express a transgene encoding human CRP, the actions of human leptin were completely blunted. We also found that physiological concentrations of leptin can stimulate expression of CRP in human primary hepatocytes. Recently, human CRP has been correlated with increased adiposity and plasma leptin. Thus, our results suggest a potential mechanism contributing to leptin resistance, by which circulating CRP binds to leptin and attenuates its physiological functions.  相似文献   

12.
Leptin is an adipocyte-secreted hormone that centrally regulates weight control via targeting the leptin receptor in the central nervous system. Recently, the leptin receptor has also been detected in peripheral systems including immune tissues, suggesting that leptin may play an important role in the regulation of immune function. It has been shown that leptin modulates functions of T lymphocytes, B lymphocytes, and monocytes/macrophage. However, the effect of leptin on NK cells remains unknown. In the present paper, we observed that percentage of NK cells and total amount of NK cells in the liver, spleen, lung, and peripheral blood were declined in leptin receptor deficient mice (db/db B6 mice), indicating that NK cell development was vigorously influenced by leptin receptor deficiency. Both basal and poly I:C-stimulated NK cell activation (CD69 surface marker expression) were retarded in db/db mice. In addition, leptin treatment increased the basal or synergistically enhanced IL-15- and poly I:C-induced specific lysis of splenocytes in normal littermates but not in db/db mice. Taken together, these findings suggest that leptin plays an important role in NK cell development and activation.  相似文献   

13.
14.
15.
Leptin, a protein hormone secreted by adipose tissue, plays an important role in regulating energy metabolism and the immune response. Despite similar extremes of adiposity, mutant mouse models, db/db, carrying spontaneous deletion of the active form of the leptin receptor (LEPR-B) intracellular signaling domain, and the s/s, carrying a specific point mutation leading to a dysfunctional LEPR-B-STAT3 signaling pathway, have been shown to have robust differences in glucose homeostasis. This suggests specific effects of leptin, mediated by non-STAT3 LEPR-B pathways. Differences in the LEPR-B signaling pathways in these two LEPR-B mutant mice models are expected to lead to differences in metabolism. In the current study, the hypothesized differences in metabolism were investigated using the metabolomics approach. Proton nuclear magnetic resonance spectroscopy ((1)HNMR) was conducted on 24 h urine samples in deuterium oxide using a 500 MHz instrument at 25°C. Principle Component Analysis showed clear separation of urine NMR spectra between the groups (P < 0.05). The CHENOMX metabolite database was used to identify several metabolites that differed between the two mouse models. Significant differences (P < 0.05) in metabolites associated with the glycine, serine, and homocysteine metabolism were observed. The results demonstrate that the metabolomic profile of db/db and s/s mice are fundamentally different and provide insight into the unique metabolic effects of leptin exerted through non-STAT3 LEPR-B pathways.  相似文献   

16.
C57BL/6 female mice were fed high fat diets containing different types of carbohydrate (sucrose or corn starch) and contents of cholesterol (0.03 % or 1 %) to identify early metabolic changes leading to increases in leptin levels and eventual insulin resistance. Under identical dietary fat conditions, type of carbohydrate and cholesterol content contributed to the timing of leptin increases. Mice fed a high-fat, high-sucrose diet showed early (4 weeks) and robust increases in circulating insulin and leptin levels (2-fold and 5-fold, respectively). In contrast, mice fed this diet with added cholesterol or with sucrose substituted by corn starch led to marked delays (8-10 weeks) in the elevations of insulin and leptin, although body weight gains were nearly identical among test diet groups. Thus, sucrose in combination with saturated fat played a specific role in initiating early metabolic changes associated with elevated leptin and insulin levels. Because leptin levels were most reflective of changes in insulin, our data support a role for insulin in determining plasma leptin levels in mice.  相似文献   

17.
Leptin, the ob gene product secreted by adipocytes, controls overall energy balance. We previously showed that leptin administration to leptin-deficient obese (ob/ob) mice suppressed mRNA expression and activity of renal 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). In leptin receptor-deficient (db/db) mice, we presently examined whether leptin affects 1alpha-hydroxylase expression in renal tubules through the active form of the leptin receptor (ObRb). Elevated serum concentrations of calcium and 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] in untreated ob/ob mice showed sharp reduction with leptin administration (4 mg/kg, i.p. every 12h for 2 days); no such reduction of elevation occurred in db/db mice. ObRb mRNA was expressed in kidney, brain, fat, lung, and bone in wild-type and ob/ob mice, but not db/db mice. The ob/ob and db/db mice showed large increases in renal 1alpha-hydroxylase mRNA expression and activity. Leptin administration (4 mg/kg) completely abrogated these increases in ob/ob but not db/db mice. Renal 25-hydroxyvitamin D(3)-24-hydroxylase (CYP24) mRNA synthesis also was greatly elevated in ob/ob and db/db mice; excesses decreased significantly with leptin administration in ob/ob mice, but increased in db/db mice. Renal tubular cells in primary culture expressed mRNAs including proximal tubules markers (1alpha-hydroxylase and megalin), parathyroid hormone receptor, and vitamin D receptor. Calcitonin receptor mRNA, synthesized mainly in distal tubules, was scant, indicating that most cultured cells were from proximal tubules. Cells did not express ObRb mRNA. Forskolin exposure at 10(-6)M for 3 or 6h significantly increased 1alpha-hydroxylase mRNA. Leptin at 10(-6)M did not change mRNA expression in either presence or absence of forskolin. Accordingly, leptin attenuates renal 1alpha-hydroxylase gene expression through ObRb. Furthermore, leptin appears to act indirectly on renal proximal tubules to regulate 1alpha-hydroxylase gene expression.  相似文献   

18.
Leptin deficiency in ob/ob mice increases susceptibility to endotoxic shock, whereas leptin pretreatment protects them against LPS-induced lethality. Lack of the long-form leptin receptor (Ob-Rb) in db/db mice causes resistance. We tested the effects of LPS in C57BL/6J db(3J)/db(3J) (BL/3J) mice, which express only the circulating leptin receptors, compared with C57BL/6J db/db (BL/6J) mice, which express all short-form and circulating isoforms of the leptin receptor. Intraperitoneal injections of LPS significantly decreased rectal temperature and increased leptin, corticosterone, and free TNF-alpha in fed and fasted BL/3J and BL/6J mice. TNF-alpha was increased three- and fourfold in BL/3J and BL/6J, respectively. LPS (100 microg) caused 50% mortality of fasted BL/6J mice but caused no mortality in fasted BL/3J mice. Pretreatment of fasted BL/3J mice with 30 microg leptin prevented the drop in rectal temperature, blunted the increase in corticosterone, but had no effect on TNF-alpha induced by 100 microg LPS. Taken together, these data provide evidence that fasted BL/3J mice are more resistant than BL/6J mice to LPS toxicity, presumably due to the absence of leptin receptors in BL/3J mice. This resistance may be due to high levels of free leptin cross-reacting with other cytokine receptors.  相似文献   

19.
Liver-specific insulin receptor knock-out (LIRKO) mice display hyperinsulinemia, abnormal glucose metabolism, and progressive liver dysfunction. In addition, circulating leptin levels appear to be increased more than 10-fold. However, food intake, body weight, and adipose mass are not significantly altered in LIRKO mice compared with wild-type littermates. Using a ligand immunofunctional assay, we found that the apparent increase in circulating leptin in LIRKO mice is because of an 80-fold increased serum level of soluble leptin receptor. Gene expression analysis by microarray and real time PCR reveals the liver as the source of soluble leptin receptor in LIRKO mice, with an increase in expression of the short (Ob-Ra), long (Ob-Rb), and soluble (Ob-Re) forms of the leptin receptor. Direct control of leptin receptor expression by insulin could also be demonstrated in isolated hepatocytes from normal mice. Despite the markedly increased levels of leptin receptor in their circulation, LIRKO mice exhibit normal or even enhanced leptin sensitivity, as assessed by their physiological and molecular responses to exogenous leptin administration and their lower base-line hypothalamic levels of SOCS3 mRNA. Thus, insulin signaling in the liver plays an important role in control of leptin receptor expression and shedding. In the LIRKO mouse, this is lost, leading to markedly increased leptin receptors into the circulation. These high levels of circulating leptin receptor bind leptin and likely alter its clearance, but do not inhibit leptin action and may actually potentiate leptin action. In this manner, insulin signaling in liver plays an important role in leptin homeostasis and fine modulation of leptin action.  相似文献   

20.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号