首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria are unique among the eubacteria as they possess a hybrid Gram phenotype, having an outer membrane but also a comparably thick peptidoglycan sheet. Furthermore, the cyanobacterial divisome includes proteins specific for both the Gram types as well as cyanobacteria-specific proteins. Cells in multicellular cyanobacteria share a continuous periplasm and their cytoplasms are connected by septal junctions that enable communication between cells in the filament. The localization of septal junction proteins depends on interaction with the divisome, however additional yet unknown proteins may be involved in this process. Here, we characterized Alr3364 (termed SepI), a novel septal protein that interacts with the divisome in the multicellular heterocystous cyanobacterium Anabaena sp. strain PCC 7120. SepI localized to the Z-ring and the intercellular septa but did not interact with FtsZ. Instead, SepI interacted with the divisome proteins ZipN, SepF and FtsI and with the septal protein SepJ. The inactivation of sepI led to a defect in cell filament integrity, colony and cell morphology, septum size, nanopore formation and peptidoglycan biogenesis, and inability to differentiate heterocysts. Our results show that SepI plays a role in intercellular communication and furthermore indicate that SepI functions in the coordination of septal junction localization during cell division.  相似文献   

2.
Heterocyst‐forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA‐dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two‐hybrid system. We found SepJ self‐interaction and a specific interaction with FtsQ, confirmed by co‐purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.  相似文献   

3.
Bacterial cytokinesis is orchestrated by an assembly of essential cell division proteins that form a supramolecular structure known as the divisome. DivIB and its orthologue FtsQ are essential members of the divisome in Gram-positive and Gram-negative bacteria respectively. DivIB is a bitopic membrane protein composed of an N-terminal cytoplasmic domain, a single-pass transmembrane domain, and a C-terminal extracytoplasmic region comprised of three separate protein domains. A molecular dissection approach was used to determine which of these domains are essential for recruitment of DivIB to incipient division sites and for its cell division functions. We show that DivIB has three molecular epitopes that mediate its localization to division septa; two epitopes are encoded within the extracytoplasmic region while the third is located in the transmembrane domain. It is proposed that these epitopes represent sites of interaction with other divisomal proteins, and we have used this information to develop a model of the way in which DivIB and FtsQ are integrated into the divisome. Remarkably, two of the three DivIB localization epitopes are dispensable for vegetative cell division; this suggests that the divisome is assembled using a complex network of protein–protein interactions, many of which are redundant and likely to be individually non-essential.  相似文献   

4.
FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL’s interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the β-domain of FtsQ. Consistent with this, we found the connection between the α- and β-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.  相似文献   

5.
Assembly of the tubulin-like cytoskeletal protein FtsZ into a ring structure at midcell establishes the location of the nascent division sites in prokaryotes. However, it is not yet known how the assembly and contraction of the Z ring are regulated, especially in cyanobacteria, the environmentally crucial organisms for which only one FtsZ partner protein, ZipN, has been described so far. Here, we characterized SepF and Ftn6, two novel septal proteins, in the spherical-celled strain Synechocystis PCC 6803. Both proteins were found to be indispensable to Synechocystis sp. strain PCC 6803. The depletion of both SepF and Ftn6 resulted in delayed cytokinesis and the generation of giant cells but did not prevent FtsZ polymerization, as shown by the visualization of green fluorescent protein (GFP)-tagged FtsZ polymers. These GFP-tagged Z-ring-like structures often appeared to be abnormal, because these reporter cells respond to the depletion of either SepF or Ftn6 with an increased abundance of total, natural, and GFP-tagged FtsZ proteins. In agreement with their septal localization, we found that both SepF and Ftn6 interact physically with FtsZ. Finally, we showed that SepF, but not Ftn6, stimulates the formation and/or stability of FtsZ polymers in vitro.Binary fission of a mother cell to form two daughter cells is a widely conserved cell proliferation mechanism. In nearly all bacteria, cell division is initiated by the polymerization into a ring-like structure at midcell of the tubulin homolog GTPase protein FtsZ, which is also found in some archae, as well as in plastids and some mitochondria (for reviews, see references 7, 21, and 33). The Z-ring is subsequently used as a scaffold for recruitment of downstream factors that execute the synthesis of the division septum. The assembly of this complex, also referred to as the divisome, has been thoroughly investigated in studies of the rod-shaped model organisms Escherichia coli and Bacillus subtilis) (for reviews, see references 3, 4, 7, 9, 11, 19, and 21). In E. coli, more than 10 different proteins are required for the progression and completion of cell division. They are designated Fts proteins because their depletion leads to filamentation of the bacteria, and they are recruited to the division site in the following sequential order: FtsZ→FtsA/ZipA/ZapB→FtsK→FtsQ and FtsL/FtsB→FtsW→FtsI and FtsN.The stability of the FtsZ protofilaments is thought to be important for assembly of the septal Z ring. Four FtsZ-interacting proteins have been shown to promote FtsZ polymerization and/or Z-ring stabilization, namely, ZapA and ZipA (found only in gammaproteobacteria), FtsA (an actin-like protein), and SepF (not found in gammaproteobacteria) (10, 31). Both FtsA and ZipA assemble at the Z-ring early and participate in its anchorage to the inner face of the cytoplasmic membrane of the cell. They also participate in the recruitment of the downstream cytokinetic factor FtsK. Subsequently, the recruitment of FtsQ and the FtsB/FtsL complex allow the progressive assembly of downstream factors (FtsW, FtsI, and FtsN) involved in synthesis of the septal cell wall (7).By contrast, the negative regulatory proteins MinCDE, DivIVA, EzrA, SulA, and Noc operate in the destabilization and positioning of the Z-ring at midcell (7, 21, 30), sometimes through a direct interaction with FtsZ (SulA, MinC, and ErzA).Little is known concerning cell division in cyanobacteria, in spite of their crucial importance to the biosphere (5, 27, 34) and their interest for biotechnologists (1, 6, 32). Cyanobacteria are also attractive because many species (such as E. coli and B. subtilis) exhibit a cylindrical morphology with a well-defined middle, whereas many others have a spherical shape (29) and thus possess an infinite number of potential division planes at the point of greatest cell diameter. Furthermore, as the progenitor of the chloroplasts (8), cyanobacteria can be of help for deciphering the stromal chloroplastic division machinery (33). Interestingly, several cell division factors occurring in E. coli and B. subtilis have been shown (FtsZ, MinCDE, and SulA) or proposed (FtsE, FtsI, FtsQ, and FtsW) to be conserved in cyanobacteria (23, 26) and chloroplasts (which lack MinC) (33). In contrast, ftsA, ftsB, zipA, ftsK, ftsL, ftsN, and zapA have not been detected in cyanobacteria.So far, cyanobacterial cytokinesis has mainly been investigated using the two unicellular species Synechococcus sp. strain PCC 7942 (rod shaped; hereafter S. elongatus) and Synechocystis sp. strain PCC 6803 (spherical-celled; hereafter Synechocystis sp.) and the filamentous strain Anabaena PCC 7120, all of which possess a fully sequenced genome (http://genome.kazusa.or.jp/cyanobase/) that is easily manipulated (16). Both FtsZ and ZipN/Ftn2/Arc6, a protein occurring only in cyanobacteria (ZipN [alternative name, Ftn2]) and plant chloroplasts (Arc6), were found to be crucial for cytokinesis (17, 23, 26) and to physically interact with each other (20, 23). We also reported that the MinCDE system participates in determining the correct positioning of the septal Z ring at midcell (23). In addition, it has recently been shown in studies of Synechococcus sp. that inactivation of both the cdv2 gene (an orthologue of the gene encoding B.subtilis sepF) and the ftn6 gene (present in only some cyanobacteria) promotes filamentation, though their role in cell division has yet to be characterized (16, 26).In a continuous effort to characterize the divisome machine of Synechocystis sp., we have used a combination of in vivo and in vitro techniques for thorough analysis of the SepF and Ftn6 proteins. We report here that both SepF and Ftn6 are crucial cytokinetic proteins that localize at the division site at midcell and whose depletion leads to the formation of giant cells that remain spherical. In agreement with their septal localization, both SepF and Ftn6 were found to interact physically with FtsZ; also, SepF, but not Ftn6, was found to stimulate the formation and/or stability of FtsZ polymers.  相似文献   

6.
The cytokinetic apparatus of bacteria is initially formed by the polymerization of the tubulin‐like FtsZ protein into a ring structure at midcell. This so‐called Z‐ring facilitates the recruitment of many additional proteins to the division site to form the mature divisome machine. Although the assembly pathway leading to divisome formation has been well characterized, the mechanisms that trigger cell constriction remain unclear. In this report, we study a ‘forgotten’ allele of ftsL from Escherichia coli, which encodes a conserved division gene of unknown function. We discovered that this allele promotes the premature initiation of cell division. Further analysis also revealed that the mutant bypasses the requirement for the essential division proteins ZipA, FtsK and FtsN, and partially bypasses the need for FtsA. These findings suggest that rather than serving simply as a protein scaffold within the divisome, FtsL may play a more active role in the activation of the machine. Our results support a model in which FtsL, along with its partners FtsB and FtsQ, function as part of a sensing mechanism that promotes the onset of cell wall remodeling processes needed for the initiation of cell constriction once assembly of the divisome complex is deemed complete.  相似文献   

7.
Using a bacterial two-hybrid system and a combination of in vivo and in vitro assays that take advantage of the green fluorescent reporter protein (GFP), we have investigated the localization and the protein-protein interaction of several key components of the cytokinetic machinery of cyanobacteria (i.e. the progenitor of chloroplast). We demonstrate that (i) the ftsZ and zipN genes are essential for the viability of the model cyanobacterium Synechocystis sp. PCC 6803, whereas the minCDE cluster is dispensable for cell growth; (ii) the GTP-binding domain of FtsZ is crucial to FtsZ assembly into the septal ring at mid-cell; (iii) the Z-ring of deeply constricted daughter cells is oriented perpendicularly to the mother Z-ring, showing that Synechocystis divides in alternating perpendicular planes; (iv) the MinCDE system affects the morphology of the cell, as well as the position and the shape of FtsZ structures; and (v) MinD is targeted to cell membranes in a process involving its C-terminal amphipathic helix, but not its ATP-binding region. Finally, we have also characterized a novel Z-interacting protein, ZipN, the N-terminal DnaJ domain of which is critical to the decoration of the Z-ring, and we report that this process is independent of MinCDE.  相似文献   

8.
Cell division in nearly all bacteria is initiated by polymerization of the conserved tubulin-like protein FtsZ into a ring-like structure at midcell. This Z-ring functions as a scaffold for a group of conserved proteins that execute the synthesis of the division septum (the divisome). Here we describe the identification of a new cell division protein in Bacillus subtilis. This protein is conserved in Gram positive bacteria, and because it has a role in septum development, we termed it SepF. sepF mutants are viable but have a cell division defect, in which septa are formed slowly and with a severely abnormal morphology. Yeast two-hybrid analysis showed that SepF can interact with itself and with FtsZ. Accordingly, fluorescence microscopy showed that SepF accumulates at the site of cell division, and this localization depends on the presence of FtsZ. Combination of mutations in sepF and ezrA, encoding another Z-ring interacting protein, had a synthetic lethal division effect. We conclude that SepF is a new member of the Gram positive divisome, required for proper execution of septum synthesis.  相似文献   

9.
Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZΔC16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF.  相似文献   

10.
SepF (Septum Forming) protein has been recently identified through genetic studies, and it has been suggested to be involved in the division of Bacillus subtilis cells. We have purified functional B. subtilis SepF from the inclusion bodies overexpressed in Escherichia coli. Far-UV circular dichroism and fluorescence spectroscopic analysis involving the extrinsic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid suggested that the purified SepF had characteristics of folded proteins. SepF was found to promote the assembly and bundling of FtsZ protofilaments using three complimentary techniques, namely 90 degrees light scattering, sedimentation, and transmission electron microscopy. SepF also decreased the critical concentration of FtsZ assembly, prevented the dilution-induced disassembly of FtsZ protofilaments, and suppressed the GTPase activity of FtsZ. Further, thick bundles of FtsZ protofilaments were observed using fluorescein isothiocyanate-labeled SepF (FITC-SepF). Interestingly, FITC-SepF was found to be uniformly distributed along the length of the FtsZ protofilaments, suggesting that SepF copolymerizes with FtsZ. SepF formed a stable complex with FtsZ, as evident from the gel filtration analysis. Using a C-terminal tail truncated FtsZ (FtsZDelta16) and a C-terminal synthetic peptide of B. subtilis FtsZ (366-382); we provided evidence indicating that SepF binds primarily to the C-terminal tail of FtsZ. The present work in concert with the available in vivo data support a model in which SepF plays an important role in regulating the assembly dynamics of the divisome complex; therefore, it may have an important role in bacterial cell division.  相似文献   

11.
Cell division in Escherichia coli requires the concerted action of at least 10 essential proteins. One of these proteins, FtsQ, is physically associated with multiple essential division proteins, including FtsK, FtsL, FtsB, FtsW, and FtsI. In this work we performed a genetic analysis of the ftsQ gene. Our studies identified C-terminal residues essential for FtsQ's interaction with two downstream proteins, FtsL and FtsB. Here we also describe a novel screen for cell division mutants based on a wrinkled-colony morphology, which yielded several new point mutations in ftsQ. Two of these mutations affect localization of FtsQ to midcell and together define a targeting role for FtsQ's alpha domain. Further characterization of one localization-defective mutant protein [FtsQ(V92D)] revealed an unexpected role in localization for the first 49 amino acids of FtsQ. Finally, we found a suppressor of FtsQ(V92D) that was due to a point mutation in domain 1C of FtsA, a domain previously implicated in the recruitment of divisome proteins. However, despite reports of a potential interaction between FtsA and FtsQ, suppression by FtsA(I143L) is not mediated via direct contact with FtsQ. Rather, this mutation acts as a general suppressor of division defects, which include deletions of the normally essential genes zipA and ftsK and mutations in FtsQ that affect both localization and recruitment. Together, these results reveal increasingly complex connections within the bacterial divisome.  相似文献   

12.
Mycobacteria lack several of the components that are essential in model systems as Escherichia coli or Bacillus subtilis for the formation of the divisome, a ring‐like structure assembling at the division site to initiate bacterial cytokinesis. Divisome assembly depends on the correct placement of the FtsZ protein into a structure called the Z ring. Notably, early division proteins that assist in the localisation of the Z ring to the cytoplasmic membrane and modulate its structure are missing in the so far known mycobacterial cell division machinery. To find mycobacterium‐relevant components of the divisome that might act at the level of FtsZ, a yeast two‐hybrid screening was performed with FtsZ from Mycobacterium tuberculosis. We identified the SepF homolog as a new interaction partner of mycobacterial FtsZ. Depending on the presence of FtsZ, SepF‐GFP fusions localised in ring‐like structures at potential division sites. Alteration of SepF levels in Mycobacterium smegmatis led to filamentous cells, indicating a division defect. Depletion of SepF resulted in a complete block of division. The sepF gene is highly conserved in the M. tuberculosis complex members. We therefore propose that SepF is an essential part of the core division machinery in the genus Mycobacterium.  相似文献   

13.
Escherichia coli cell division is effected by a large assembly of proteins called the divisome, of which a subcomplex consisting of three bitopic inner membrane proteins, FtsQ, FtsB, and FtsL, is an essential part. These three proteins, hypothesized to link cytoplasmic to periplasmic events during cell division, contain large periplasmic domains that are of major importance for function and complex formation. The essential nature of this subcomplex, its low abundance, and its multiple interactions with key divisome components in the relatively accessible periplasm make it an attractive target for the development of protein-protein interaction inhibitors. Although the crystal structure of the periplasmic domain of FtsQ has been solved, the structure of the FtsQBL complex is unknown, with only very crude indications of the interactions in this complex. In this study, we used in vivo site-specific photo cross-linking to probe the surface of the FtsQ periplasmic domain for its interaction interfaces with FtsB and FtsL. An interaction hot spot for FtsB was identified around residue Ser-250 in the C-terminal region of FtsQ and a membrane-proximal interaction region for both proteins around residue Lys-59. Sequence alignment revealed a consensus motif overlapping with the C-terminal interaction hot spot, underlining the importance of this region in FtsQ. The identification of contact sites in the FtsQBL complex will guide future development of interaction inhibitors that block cell division.  相似文献   

14.
FtsK is a multifunctional protein involved in both cell division and chromosome segregation. As far as its role in cell division is concerned, FtsK is among the first divisome proteins that localizes at mid-cell, after FtsZ, FtsA and ZipA, and is required for the recruitment of the other divisome components. The ability of FtsK to interact with several cell division proteins, namely FtsZ, FtsQ, FtsL and FtsI, by the two-hybrid assay was already shown by our group. In this work, we describe the identification of the protein domain(s) involved in the interaction with the cell division partner proteins. The biological role of some interactions is also discussed.  相似文献   

15.
FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.  相似文献   

16.
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.  相似文献   

17.
The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.  相似文献   

18.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

19.
Because very little is known about cell division in noncylindrical bacteria and cyanobacteria, we investigated 10 putative cytokinetic proteins in the unicellular spherical cyanobacterium Synechocystis strain PCC 6803. Concerning the eight penicillin-binding proteins (PBPs), which define three classes, we found that Synechocystis can survive in the absence of one but not two PBPs of either class A or class C, whereas the unique class B PBP (also termed FtsI) is indispensable. Furthermore, we showed that all three classes of PBPs are required for normal cell size. Similarly, the putative FtsQ and FtsW proteins appeared to be required for viability and normal cell size. We also used a suitable bacterial two-hybrid system to characterize the interaction web among the eight PBPs, FtsQ, and FtsW, as well as ZipN, the crucial FtsZ partner that occurs only in cyanobacteria and plant chloroplasts. We showed that FtsI, FtsQ, and ZipN are self-interacting proteins and that both FtsI and FtsQ interact with class A PBPs, as well as with ZipN. Collectively, these findings indicate that ZipN, in interacting with FtsZ and both FtsI and FtQ, plays a similar role to the Escherichia coli FtsA protein, which is missing in cyanobacteria and chloroplasts.The peptidoglycan layer (PG) of bacterial cell wall is a major determinant of cell shape, and the target of our best antibiotics. It is built from long glycan strands of repeating disaccharides cross-linked by short peptides (38). The resultant meshwork structure forms a strong and elastic exoskeleton essential for maintaining shape and withstanding intracellular pressure. Cell morphogenesis and division have been essentially studied in the rod-shaped organisms Escherichia coli and Bacillus subtilis, which divide through a single medial plane (8, 10, 21, 23). These organisms have two modes of cell wall synthesis: one involved in cell elongation and the second operating in septation (2). Each mode of synthesis is ensured by specific protein complexes involving factors implicated in the last step of PG synthesis (2). The complete assembly of PG requires a glycosyl transferase that polymerizes the glycan strands and a transpeptidase that cross-links them via their peptide side chains (35). Both activities are catalyzed by penicillin-binding proteins (PBPs), which can be divided into three classes: class A and class B high-molecular-weight (HMW) PBPs and class C low-molecular-weight (LMW) PBPs (35).Class A PBPs exhibit both transglycosylase and transpeptidase activities. In E. coli, they seem to be nonspecialized (2), as they operate in the synthesis of both cylindrical wall (cell elongation) and septal PG (cytokinesis). In B. subtilis, PBP1 (class A) is partially localized to septal sites and its depletion leads to cell division defects (31).Class B PBPs, which comprise two proteins in most bacteria, are monofunctional transpeptidases (35), each involved in longitudinal and septal growth of cell wall, respectively (36). In E. coli, this protein, PBP3, is also termed FtsI, because it belongs to the Fts group of cell division factors whose depletion leads to the filamentation phenotype (11). These at least 10 Fts proteins are recruited to the division site at mid-cell in the following sequential order: FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsL/FtsB, FtsW, FtsI, and FtsN (11). The cytoplasmic protein FtsZ is the first recruited to the division site, where it polymerizes in a ring-like structure (1), which serves as a scaffold for the recruitment of the other Fts proteins and has been proposed to drive the division process (6). Together the Fts proteins form a complex machine coordinating nucleoid segregation, membrane constriction, septal PG synthesis, and possibly membrane fusion.Unlike the other PBPs, class C PBPs do not operate in PG synthesis but rather in maturation or recycling of PG during cell septation (35). They are subdivided into four types. Class C type 5 PBP removes the terminal d-alanine residue from pentapeptide side-chains (dd-carboxypeptidase activity). Types 4 and 7 are able to cleave the peptide cross-links (endopeptidase activity). Finally, type AmpH, which does not have a defined enzymatic activity, is believed to play a role in the normal course of PG synthesis, remodeling or recycling (for a review, see reference 35).In contrast to rod-shaped bacteria, less is known concerning PG synthesis, morphogenesis, and cytokinesis, and their relationships, in spherical-celled bacteria, even though a wealth of them have a strong impact on the environment and/or human health. Furthermore, unlike rod-shaped bacteria spherical-celled bacteria possess an infinite number of potential division planes at the point of greater cell diameter, and they divide through alternative perpendicular planes (26, 36, 37, 39). The spherical cells of Staphylococcus aureus seem to insert new PG strands only at the septum, and accordingly the unique class A PBP localizes at the septum during cell division (36). In contrast, the rugby-ball-shaped cells of Streptococcus pneumoniae synthesize cell wall at both the septum and the neighboring region called “equatorial rings” (36). Accordingly, class A PBP2a and PBP1a were found to operate in elongation and septation, respectively (29).In cyanobacteria, which are crucial to the biosphere in using solar energy to renew the oxygenic atmosphere and which make up the biomass for the food chain (7, 30, 40), cell division is currently investigated in two unicellular models with different morphologies: the rod-shaped Synechococcus elongatus strain PCC 7942 (19, 28) and the spherical-celled Synechocystis strain PCC 6803 (26), which both possess a small fully sequenced genome (http://genome.kazusa.or.jp/cyanobase/) that is easily manipulable (18). In both organisms FtsZ and ZipN/Arc6, a protein occurring only in cyanobacteria (ZipN) and plant chloroplasts (Arc6), were found to be crucial for cytokinesis (19, 26, 28) and to physically interact with each other (25, 26). Also, interestingly, recent studies of cell division in the filamentous cyanobacterium Anabaena (Nostoc) strain PCC 7120, showed that this process is connected with the differentiation of heterocysts, the cells dedicated to nitrogen fixation (34).In a continuous effort to study the cell division machine of the unicellular spherical cyanobacterium Synechocystis, we have presently characterized its eight presumptive PBPs (22) that define three classes and the putative cytokinetic proteins FtsQ and FtsW, as well as their network of interactions between each other and ZipN. Both FtsI and FtsQ were found to be key players in cell division in interacting with ZipN and class A PBPs. Consequently, ZipN in interacting with FtsZ (26), FtsI, and FtQ, like the FtsA protein of E. coli, could play a role similar to FtsA, which is absent in cyanobacteria and chloroplasts.  相似文献   

20.
Structural and mutational analysis of the cell division protein FtsQ   总被引:1,自引:0,他引:1  
Bacterial cytokinesis requires the divisome, a complex of proteins that co-ordinates the invagination of the cytoplasmic membrane, inward growth of the peptidoglycan layer and the outer membrane. Assembly of the cell division proteins is tightly regulated and the order of appearance at the future division site is well organized. FtsQ is a highly conserved component of the divisome among bacteria that have a cell wall, where it plays a central role in the assembly of early and late cell division proteins. Here, we describe the crystal structure of the major, periplasmic domain of FtsQ from Escherichia coli and Yersinia enterocolitica . The crystal structure reveals two domains; the α-domain has a striking similarity to polypeptide transport-associated (POTRA) domains and the C-terminal β-domain forms an extended β-sheet overlaid by two, slightly curved α-helices. Mutagenesis experiments demonstrate that two functions of FtsQ, localization and recruitment, occur in two separate domains. Proteins that localize FtsQ need the second β-strand of the POTRA domain and those that are recruited by FtsQ, like FtsL/FtsB, require the surface formed by the tip of the last α-helix and the two C-terminal β-strands. Both domains act together to accomplish the role of FtsQ in linking upstream and downstream cell division proteins within the divisome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号