首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Zeng  EE Ebong  BM Fu  JM Tarbell 《PloS one》2012,7(8):e43168

Rationale

It is widely believed that glycosaminoglycans (GAGs) and bound plasma proteins form an interconnected gel-like structure on the surface of endothelial cells (the endothelial glycocalyx layer–EGL) that is stabilized by the interaction of its components. However, the structural organization of GAGs and proteins and the contribution of individual components to the stability of the EGL are largely unknown.

Objective

To evaluate the hypothesis that the interconnected gel-like glycocalyx would collapse when individual GAG components were almost completely removed by a specific enzyme.

Methods and Results

Using confocal microscopy, we observed that the coverage and thickness of heparan sulfate (HS), chondroitin sulfate (CS), hyaluronic acid (HA), and adsorbed albumin were similar, and that the thicknesses of individual GAGs were spatially nonuniform. The individual GAGs were degraded by specific enzymes in a dose-dependent manner, and decreased much more in coverage than in thickness. Removal of HS or HA did not result in cleavage or collapse of any of the remaining components. Simultaneous removal of CS and HA by chondroitinase did not affect HS, but did reduce adsorbed albumin, although the effect was not large.

Conclusion

All GAGs and adsorbed proteins are well inter-mixed within the structure of the EGL, but the GAG components do not interact with one another. The GAG components do provide binding sites for albumin. Our results provide a new view of the organization of the endothelial glycocalyx layer and provide the first demonstration of the interaction between individual GAG components.  相似文献   

2.
The endothelial cell glycocalyx, a structure coating the luminal surface of the vascular endothelium, and its related mechanotransduction have been studied by many over the last decade. However, the role of vascular smooth muscle cells (SMCs) glycocalyx in cell mechanotransduction has triggered little attention. This study addressed the role of heparan sulfate proteoglycans (HSPGs), a major component of the glycocalyx, in the shear-induced proliferation, migration, and nitric oxide (NO) production of the rat aortic smooth muscle cells (RASMCs). A parallel plate flow chamber and a peristaltic pump were employed to expose RASMC monolayers to a physiological level of shear stress (12 dyn/cm(2)). Heparinase III (Hep.III) was applied to selectively degrade heparan sulfate on the SMC surface. Cell proliferation, migration, and NO production rates were determined and compared among the following four groups of cells: 1) untreated with no flow, 2) Hep.III treatment with no flow, 3) untreated with flow of 12 dyn/cm(2) exposure, and 4) Hep.III treatment with flow of 12 dyn/cm(2) exposure. It was observed that flow-induced shear stress significantly suppressed SMC proliferation and migration, whereas cells preferred to aligning along the direction of flow and NO production were enhanced substantially. However, those responses were not found in the cells with Hep.III treatment. Under flow condition, the heparinase III-treated cells remained randomly oriented and proliferated as if there were no flow presence. Disruption of HSPG also enhanced wound closure and inhibited shear-induced NO production significantly. This study suggests that HSPG may play a pivotal role in mechanotransduction of SMCs.  相似文献   

3.
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape.  相似文献   

4.
The 14C-acetate metabolic labeling of glycosaminoglycans (GAGs) was used to investigate the effect of high glucose level on the production of hyaluronic acid (HA), heparan sulphate (HS), chondroitin sulphate (CS) and dermatan sulphate (DS) by human immortalized umbilical vein endothelial cells. It is demonstrated that 30 mM glucose decreased the accumulation of HS and increased the accumulation of CS and DS in the cell layer, pericellular matrix and conditioned medium in 48 h of incubation. The modulation of the overall metabolism of sulphated GAGs by high glucose is in contrast to the observed redistribution of HA from the conditioned medium to the pericellular matrix of endothelial cells. The preincubation at 30 mM glucose increased also the attachment of hyaluronidase-treated endothelial cells to HA-coated surface and had no effect on the cell attachment to poly-D-lysine, indicating the alterations of CD44 binding to immobilized HA. The treatment of endothelial cells with p-nitrophenyl-beta-D-xylopyranoside, which inhibits the coupling of CS to the core protein, attenuated high glucose-induced pericellular HA accumulation and decreased cell attachment to HA-coated surface. It is supposed the implication of CD44-related CS in the accumulation of pericellular HA by endothelial cells exposed to high glucose level.  相似文献   

5.
It has been shown previously that hyaluronan (HA) added to fibroblast and keratocyte cell cultures or corneal explant cultures produces an up-regulation of MMP-2 and MMP-9 expression and activation. Here, we examine the effect of sulfated GAG-s, chondroitin 4 and 6 sulfate (CS4, CS6), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) on MMP-2 and 9 expression and activation under the same culture conditions. It appears that CS4 has only minor effects, KS inhibits MMP-2 activation and CS6, DS and HS increase MMP-2 activation in corneal explant cultures. For skin explant cultures, DS, KS and HS strongly increase MMP-9 activation, whereas KS inhibits and DS increases MMP-2 activation. All these effects can be strongly inhibited by the addition of an antibody to CD44, except CS6 and DS. Activation by these two GAGs was only slightly affected, supporting the contention that the effects of HA, CS4, KS and HS are mediated by one of the isoforms of this CD44 receptor. The physio-pathological significance of these results is discussed for cornea and skin ageing, because of the divergent evolution with in vitro ageing of the relative proportions of GAGs synthesised by these two cell types.  相似文献   

6.
Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit‐Hill cells and circulating angiogenic cells are subject to age‐associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age‐related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age‐associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2‐O‐sulfated‐uronic acid, N, 6‐O‐sulfated‐glucosamine (UA[2S]‐GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood‐derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age‐related vascular pathologies.  相似文献   

7.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

8.
Due to its unique location, the endothelial surface glycocalyx (ESG) at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO) production in post-capillary venules and arterioles of rat mesentery under reduced (low) and normal (high) flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS) of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA). Rats (SD, 250–300g) were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s) and for ~60 min under a high flow (~1000 μm/s). In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.  相似文献   

9.
Glycosaminoglycans (GAGs) play an important role in stabilizing the gel state of eye vitreous humour. In this study, the composition of GAGs present in bovine eye vitreous was characterized through disaccharide analysis by liquid chromatography-mass spectrometry. The interaction of GAGs with collagen type II was assessed using surface plasmon resonance (SPR). The percentage of hyaluronic acid (HA), chondroitin sulfate (CS) and heparan sulfate (HS), of total GAG, were 96.2%, 3.5% and 0.3%, respectively. The disaccharide composition of CS consisted of 4S (49%), 0S (38%) 6S (12%), 2S6S (1.5%) and 2S4S (0.3%). The disaccharide composition of HS consisted of 0S (80%), NS2S (7%), NS (7%), 6S (4%), NS6S (2%), and TriS, 2S and 4S6S (each at 0.1%). The average molecular weights of CS and HS were 148 kDa and 204 kDa, respectively. SPR reveals that collagen type II binds to heparin (primarily composed of TriS) with a binding affinity (K D) of 755 nM and interacts with other GAGs, including CSB and CSE. Both bovine vitreous CS and HS interact with collagen type II, with vitreous HS showing a higher binding affinity.  相似文献   

10.
Abstract: Isolated glycosaminoglycans (GAGs) were quantified biochemically in the cerebella of 6-day-old rats. 14C-Labeled hyaluronic acid (HA) and chondroitin-4-sulfate (C-4-S), added prior to isolation of GAGs from tissue, served as internal standards to allow correction for unknown losses during the purification procedure and exact quantification of GAGs in the intact tissue. Three main constituents—HA, chondroitin sulfate (CS), and heparan sulfate (HS)—were found at concentrations of 1.82, 1.52, and 0.76 μg/mg protein amounting to 44%, 37%, and 19% of the total GAG fraction, respectively. Incorporation of [3H]glucosamine precursor into GAGs was higher for HS (56% of incorporated precursor) and lower for HA (29%) and CS (15%). The specific activities of individual GAGs were 64.7 nCi/μg for HS, 14.2 for HA, and 8.3 for CS.  相似文献   

11.
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.  相似文献   

12.
The pulmonary endothelial surface   总被引:2,自引:0,他引:2  
The understanding of endothelial metabolic properties has increased dramatically in recent years. Endothelial cells (ECs) process hormones, drugs, and many blood-borne substances by means of enzymes and transport processes. In turn, some hormones, blood cells, and cellular products interact with ECs via specific receptors on the luminal surface. Functional complexity is exemplified by the metabolism of the adenine nucleotides. ATP, ADP, and AMP are metabolized by enzymes of the endothelial surface to release adenosine, which may be immediately taken up into endothelium and reincorporated intracellularly into nucleotides. Equally complex is the metabolism of the kinins and angiotensins by ECs. Bradykinin is inactivated whereas angiotensin I is converted to angiotensin II. Bradykinin not thus degraded can act on endothelial receptors and stimulate the release of prostacyclin (PGI2). Thus bradykinin can amplify the release of another vasodilator, PGI2, and can stimulate the release of a powerful antiaggregatory agent (PGI2). Many of these complex metabolic reactions occur at the endothelial surface, a structure that is itself complex. ECs possess endothelial projections and caveolae as well as a fuzzy coat, or glycocalyx. Functions of the endothelial glycocalyx are not well understood, but the glycocalyx can now be visualized: it may act as a molecular sieve and provide a substratum for the initiation and progression of immunologic reactions.  相似文献   

13.
花背蟾蜍角膜早期发育中氨基多糖的电镜细胞化学研究   总被引:2,自引:0,他引:2  
Glycosaminoglycans (GAGs) and their changes in early corneal development of Bufo raddei Strauch (from stage 16, neural tube, to stage 25, operculum completely closed) were studied with electron microscopic cytochemical method. Results show that synthesis of GAGs changes from non-sulfated to sulfated, and its content increased gradually with the development of cornea. Hyaluronic acid (HA) in each part of cornea begins to increase gradually from stage 16 to 21 (mouth open stage), with its peak at stage 20 (gill circulation stage) to 21, then decreases. In the mean time, contents of dermatam sulfate (DS), chondroitin sulfate (CS), heparan sulfate (HS) and heparin (Hep) increase gradually. It is considered that HA, HS and collagen may be related to the migration of mesenchymal cells, and HA promotes the expansion and hydration of corneal stroma; sulfated GAGs are correlated with dehydration of cornea, cell density and corneal transparency; DS, CS, HS and Hep deposited among collagen fibrils could adjust their arrangement. All these changes would enhance transparency of cornea.  相似文献   

14.
In this study, we developed an on-line reverse-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) separation and structural characterization of hyaluronan (HA)/chondroitin sulfate (CS)/dermatan sulfate (DS) disaccharides released by enzymatic treatment and derivatized with 2-aminoacridone (AMAC), providing a high-resolution system also applicable by using a further fluorimetric detector (Fp) before ESI-MS spectral acquisition. Isomeric nonsulfated HA and CS/DS disaccharides, isomeric monosulfated and isomeric disulfated CS/DS disaccharides, and the trisulfated species were distinctly separated and unambiguously identified by their retention times and mass spectra in negative ionization mode. In general, no multiply charged ions were detected even for highly charged disaccharides, but the presence of desulfonated products for highly sulfated species due to the relative instability of sulfo groups was observed. RP-HPLC-ESI-MS of each AMAC disaccharide was found to be linear from 3 to 500 ng with very high coefficient of correlation values due to the high efficiency of separation and the sharp outline of the peaks. Various CS/DS samples were characterized for disaccharide composition, and minor oligomer species identified as GalNAcSO4 at the nonreducing end of chains was observed as a common component of these macromolecules. Furthermore, purified endogenous normal human plasma CS disaccharides were also evaluated by means of RP-HPLC-(Fp)-ESI-MS.  相似文献   

15.
We developed a simple methodology for labeling sulfated glycosaminoglycans (GAGs) in adult Drosophila melanogaster and studied some aspects of the biosynthesis and metabolism of these polymers during development. Adult D. melanogaster flies were fed with Na(2)(35)SO(4) for 72 h. During this period, (35)S-sulfate was incorporated into males and females and used to synthesize (35)S-sulfate-heparan sulfate (HS) and (35)S-sulfate-chondroitin sulfate (CS). The incorporation of (35)S-sulfate into HS was higher when compared to CS. In a pulse-chase experiment, we observed that (35)S-sulfate incorporated into adult female was recovered in embryos and used for the synthesis of new (35)S-sulfate-GAGs after 2 h of embryonic development. The synthesis of CS was higher than that of HS, indicating a change in the metabolism of these glycans from adult to embryonic and larval stages. Analysis of the CS in embryonic and larval tissues revealed the occurrence of nonsulfated and 4-sulfated disaccharide units in embryos, L1 and L2. In L3, in addition to these disaccharides, we also detected significant amount of 6-sulfated units that are reported here for the first time. Immunohistochemical analysis indicated that HS and CS were present in nonequivalent structures in adult and larval stages of the fly. Overall, these results indicate that (35)S-sulfate-precursors are transferred from adult to embryonic and larval tissues and used to assemble different morphological structures during development.  相似文献   

16.
Changes in glycosaminoglycan expression in the rat developing intestine   总被引:1,自引:0,他引:1  
Synthesis of glycosaminoglycan (GAG) chains was studied in the developing rat intestine. Intestinal segments, taken at various developmental stages, were exposed to 3H-glucosamine and 35S-sulfate for 6 hours. The amounts of 3H-GAGs (total GAGs) and of 35S-GAGs (sulfated GAGs) showed a clear age-dependence, with a broad maximum in the fetal period when dramatic growth and morphogenesis occur. Characterization of individual GAG species indicated that hyaluronic acid (HA), heparan and chondroitin sulfate (HS and CS) synthesis was modified quantitatively or qualitatively during development: decrease of HA with age; production of undersulfated HS molecules during embryonic life; shift towards a lower hydrodynamic form of HA and HS molecules after birth. We postulate that these alterations are crucial in the elaboration of an age-related specific extracellular microenvironment allowing intestinal growth and differentiation.  相似文献   

17.
A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.  相似文献   

18.
Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused with a Krebs-Henseleit solution at a wide range of perfusion rates with and without pretreatment with hyaluronidase to degrade hyaluronic acid glycosaminoglycans within the glycocalyx layer. NO production rate was evaluated as the product of nitrite concentration in the perfusate and steady-state perfusion rate. The slope that correlates the linear relation between perfusion rate and NO production rate was taken as a measure for flow-induced NO production. Hyaluronidase treatment significantly decreased flow-induced NO production to 19 +/- 9% of control (mean +/- SD; P < 0.0001 vs. control; n = 11), whereas it did not affect acetylcholine-induced NO production (88 +/- 17% of pretreatment level, P = not significant; n = 10). We conclude that hyaluronic acid glycosaminoglycans within the glycocalyx play a pivotal role in detecting and amplifying the shear force of flowing blood that triggers endothelium-derived NO production in isolated canine femoral arteries.  相似文献   

19.
This study measures the effects of total urinary glycosaminoglycans (GAGs), glycoproteins (GPs) and individual GAGs on the nucleation rates (Bo), growth rates (G) and suspension densities (Mт) of calcium oxalate (CaOx) crystallization by the mixed suspension mixed product removal (MSMPR) system. Total urinary GAGs, glycoproteins and individual GAGs including heparan sulfate (HS), chondroitin sulfate (CS) and Hyaluronic acid (HA) were added into the artificial urine (AU) and then introduced into the MSMPR test chamber and the crystal sizes and numbers were analyzed by a particle counter. The effects of added GAGs and GPs on CaOx crystallization were reflected by the changes on the crystallization indexes including the Bo, G and Mт of CaOx that were calculated based on the crystal size and numbers. Total urinary GAGs showed no statistical significance on CaOx crystallization. However, individual GAGs such as HA, CS and HS enhanced Bo and suppressed the G when measured individually. CS and HS enhanced the Mт while HA shown no significant change in the Mт of CaOx. Total urinary GPs showed an increase in the G and Mт of crystals. Although total urinary GAGs showed no statistically significant effect on CaOx crystallization, individual GAGs (CS, HS) promoted the CaOx crystallization by increasing the suspension density of smaller crystals, indicative of reduced risk of stones while HA showed no significance in the M(T) of CaOx formed. Urinary GPs indicated increased sizes and M(T) suggesting larger crystals and/or aggregates.  相似文献   

20.
Structural characteristics of glycosaminoglycans (GAGs) derived from axonally transported proteoglycans (PGs) were compared in 21 day regenerating and intact goldfish optic tracts. Twenty one days following unilateral optic nerve crushes, fish received intraocular injections of35SO4. Eight hours post injection, tracts were removed and the35SO4-labeled GAGs, chondroitin sulfate (CS) and heparan sulfate (HS), isolated. The HS from regenerating optic tracts had a DEAE elution profile indicative of decreased charge density, while heparitinase treatment of HS followed by Sephadex G50 analysis of the resulting fragments showed a change in the elution pattern, suggesting reduced overall sulfation. HPLC analysis of HS disaccharides revealed a difference in the sulfation pattern of regenerating tract HS, characterized by the reduced presence of tri-sulfated disaccharides. Other structural features, such as the sizes of CS and HS, and the sulfation of CS, showed no changes during regeneration. These results indicate that changes in the structure of axonally transported HS accompany regeneration of goldfish optic axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号