首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The method of two-dimensional protein gel electrophoresis was used to evaluate the changes at the proteins level following oxygen exposure of the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Fifty-seven proteins showed significant differential expression. The cellular concentration of 35 proteins decreased while that of nineteen increased as a specific consequence of oxidative conditions. The proteins that were less abundant belonged to various functional categories such as nucleic acid and protein biosynthesis, detoxification mechanisms, or cell division. Interestingly, quantitative real-time PCR revealed that the genes encoding detoxification enzymes (rubrerythrins, superoxide reductase) are down regulated. The loss of viability of D. vulgaris Hildenborough under these oxidative conditions (Fournier et al., J. Biol. Chem. 279 (2004) 1785) can be directly related to the decrease in the cellular concentrations of these proteins, thereby specifying the toxicity of oxygen for the cells. Among the proteins that were more abundant under oxygen exposure, several thiol-specific peroxidases (thiol-peroxidase, BCP-like protein, and putative glutaredoxin) were identified. Using RT-PCR, the up-regulation of the genes encoding the thiol-peroxidase and the BCP was demonstrated. That is the first time that these proteins have been shown to be involved in the defense of D. vulgaris toward an oxidative stress. Several hypothetical proteins were also shown to be differentially expressed. A function in the defense mechanism against an oxidative stress is proposed for these uncharacterized proteins.  相似文献   

3.
4.
Davies KJ 《IUBMB life》2000,50(4-5):279-289
Oxidative stress is an unavoidable consequence of life in an oxygen-rich atmosphere. Oxygen radicals and other activated oxygen species are generated as by-products of aerobic metabolism and exposure to various natural and synthetic toxicants. The "Oxygen Paradox" is that oxygen is dangerous to the very life-forms for which it has become an essential component of energy production. The first defense against oxygen toxicity is the sharp gradient of oxygen tension, seen in all mammals, from the environmental level of 20% to a tissue concentration of only 3-4% oxygen. These relatively low tissue levels of oxygen prevent most oxidative damage from ever occurring. Cells, tissues, organs, and organisms utilize multiple layers of antioxidant defenses and damage removal, and replacement or repair systems in order to cope with the remaining stress and damage that oxygen engenders. The enzymes comprising many of these protective systems are inducible under conditions of oxidative stress adaptation, in which the expression of over 40 mammalian genes is upregulated. Mitotic cells have the additional defensive ability of entering a transient growth-arrested state (in the first stages of adaptation) in which DNA is protected by histone proteins, energy is conserved by diminished expression of nonessential genes, and the expression of shock and stress proteins is greatly increased. Failure to fully cope with an oxidative stress can switch mitotic cells into a permanent growth-arrested, senescence-like state in which they may survive for long periods. Faced with even more severe oxidative stress, or the declining protective enzymes and adaptive capacity associated with aging, cells may "sacrifice themselves" by apoptosis, which protects surrounding healthy tissue from further damage. Only under the most severe oxidative stress conditions will cells undergo a necrotic death, which exposes surrounding tissues to the further vicissitudes of an inflammatory immune response. This remarkable array of systems for defense; damage removal, replacement, and repair; adaptation; growth modulation; and apoptosis make it possible for us to enjoy life in an oxygen-rich environment.  相似文献   

5.
6.
7.
In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress‐responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress‐responsive genes increased to lower levels. Genes up‐regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Role of oxidative stress in Drosophila aging.   总被引:2,自引:0,他引:2  
We review the role that oxidative damage plays in regulating the lifespan of the fruit fly, Drosophila melanogaster. Results from our laboratory show that the lifespan of Drosophila is inversely correlated to its metabolic rate. The consumption of oxygen by adult insects is related to the rate of damage induced by oxygen radicals, which are purported to be generated as by-products of respiration. Moreover, products of activated oxygen species such as hydrogen peroxide and lipofuscin are higher in animals kept under conditions of increased metabolic rate. In order to understand the in vivo relationship between oxidative damage and the production of the superoxide radical, we generated transgenic strains of Drosophila melanogaster that synthesize excess levels of enzymatically active superoxide dismutase. This was accomplished by P-element transformation of Drosophila melanogaster with the bovine cDNA for CuZn superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide radical to hydrogen peroxide and water. Adult flies that express the bovine SOD in addition to native Drosophila SOD are more resistant to oxidative stresses and have a slight but significant increase in their mean lifespan. Thus, resistance to oxidative stress and lifespan of Drosophila can be manipulated by molecular genetic intervention. In addition, we have examined the ability of adult flies to respond to various environmental stresses during senescence. Resistance to oxidative stress, such as that induced by heat shock, is drastically reduced in senescent flies. This loss of resistance is correlated with the increase in protein damage generated in old flies by thermal stress and by the insufficient protection from cellular defense systems which includes the heat shock proteins as well as the oxygen radical scavenging enzymes. Collectively, results from our laboratory demonstrate that oxidative damage plays a role in governing the lifespan of Drosophila during normal metabolism and under conditions of environmental stress.  相似文献   

16.
17.
18.
19.
To investigate the importance of different processes to heat stress tolerance, 45 Arabidopsis (Arabidopsis thaliana) mutants and one transgenic line were tested for basal and acquired thermotolerance at different stages of growth. Plants tested were defective in signaling pathways (abscisic acid, salicylic acid, ethylene, and oxidative burst signaling) and in reactive oxygen metabolism (ascorbic acid or glutathione production, catalase) or had previously been found to have temperature-related phenotypes (e.g. fatty acid desaturase mutants, uvh6). Mutants were assessed for thermotolerance defects in seed germination, hypocotyl elongation, root growth, and seedling survival. To assess oxidative damage and alterations in the heat shock response, thiobarbituric acid reactive substances, heat shock protein 101, and small heat shock protein levels were determined. Fifteen mutants showed significant phenotypes. Abscisic acid (ABA) signaling mutants (abi1 and abi2) and the UV-sensitive mutant, uvh6, showed the strongest defects in acquired thermotolerance of root growth and seedling survival. Mutations in nicotinamide adenine dinucleotide phosphate oxidase homolog genes (atrbohB and D), ABA biosynthesis mutants (aba1, aba2, and aba3), and NahG transgenic lines (salicylic acid deficient) showed weaker defects. Ethylene signaling mutants (ein2 and etr1) and reactive oxygen metabolism mutants (vtc1, vtc2, npq1, and cad2) were more defective in basal than acquired thermotolerance, especially under high light. All mutants accumulated wild-type levels of heat shock protein 101 and small heat shock proteins. These data indicate that, separate from heat shock protein induction, ABA, active oxygen species, and salicylic acid pathways are involved in acquired thermotolerance and that UVH6 plays a significant role in temperature responses in addition to its role in UV stress.  相似文献   

20.
Akhter Y  Yellaboina S  Farhana A  Ranjan A  Ahmed N  Hasnain SE 《Gene》2008,407(1-2):148-158
cAMP Receptor Protein (CRP)/Fumarate Nitrate Reductase Regulator (FNR) family proteins are ubiquitous regulators of cell stress in eubacteria. These proteins are commonly associated with maintenance of intracellular oxygen levels, redox-state, oxidative and nitrosative stresses, and extreme temperature conditions by regulating expression of target genes that contain regulatory cognate DNA elements. We describe the use of informatics enabled comparative genomics to identify novel genes under the control of CRP regulator in Mycobacterium tuberculosis (M.tb). An inventory of CRP regulated genes and their operon context in important mycobacterial species such as M. leprae, M. avium subsp. paratuberculosis and M. smegmatis and several common genes within this genus including the important cellular functions, mainly, cell-wall biogenesis, cAMP signaling and metabolism associated with such regulons were identified. Our results provide a possible theoretical framework for better understanding of the stress response in mycobacteria. The conservation of the CRP regulated genes in pathogenic mycobacteria, as opposed to non-pathogenic ones, highlights the importance of CRP-regulated genes in pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号