首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.

Background  

Congenital aniridia caused by heterozygousity at the PAX6 locus is associated with ocular surface disease including keratopathy. It is not clear whether the keratopathy is a direct result of reduced PAX6 gene dosage in the cornea itself, or due to recurrent corneal trauma secondary to defects such as dry eye caused by loss of PAX6 in other tissues. We investigated the hypothesis that reducing Pax6 gene dosage leads to corneal wound-healing defects. and assayed the immediate molecular responses to wounding in wild-type and mutant corneal epithelial cells.  相似文献   

4.
5.
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 tm1Ued (Pax6 fl ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 fl/fl and heterozygous Pax6 fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 Sey-Neu (Pax6 ?) null allele. Pax6 fl/? compound heterozygotes had more severe eye abnormalities than Pax6 +/? heterozygotes, implying that Pax6 fl differs from the wild-type Pax6 + allele. Immunohistochemistry showed that the Pax6 fl/? corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.  相似文献   

6.
Mutations in paired-box-containing (Pax) genes have recently been found to be the primary lesions underlying human genetic disorders such as Waardenburg's Syndrome type 1 and mouse developmental mutants such as undulated (un), splotch (Sp), and small eye (Sey). In addition, PAX-6 is a strong candidate gene for aniridia in man. Eight independent Pax genes have been isolated in the mouse. All eight map to distinct regions of the mouse genome; they do not appear to be clustered in the same way as some groups of homeobox-containing genes. We have now mapped the human homologs of all eight of these genes; PAX genes are found on human Chromosomes (Chr) 1, 2, 7, 9, 10, 11, and 20.  相似文献   

7.
8.
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6+ B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development.  相似文献   

9.
10.
Caffeine has been an integral component of our diet and medicines for centuries. It is now known that over consumption of caffeine has detrimental effects on our health, and also disrupts normal foetal development in pregnant mothers. In this study, we investigated the potential teratogenic effect of caffeine over‐exposure on eye development in the early chick embryo. Firstly, we demonstrated that caffeine exposure caused chick embryos to develop asymmetrical microphthalmia and induced the orbital bone to develop abnormally. Secondly, caffeine exposure perturbed Pax6 expression in the retina of the developing eye. In addition, it perturbed the migration of HNK‐1+ cranial neural crest cells. Pax6 is an important gene that regulates eye development, so altering the expression of this gene might be the cause for the abnormal eye development. Thirdly, we found that reactive oxygen species (ROS) production was significantly increased in eye tissues following caffeine treatment, and that the addition of anti‐oxidant vitamin C could rescue the eyes from developing abnormally in the presence of caffeine. This suggests that excess ROS induced by caffeine is one of the mechanisms involved in the teratogenic alterations observed in the eye during embryogenesis. In sum, our experiments in the chick embryo demonstrated that caffeine is a potential teratogen. It causes asymmetrical microphthalmia to develop by increasing ROS production and perturbs Pax6 expression.  相似文献   

11.
In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca+2-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.CONTIGUOUS gene deletions account for a significant portion of human genetic syndromes. The application of fluorescence in situ hybridization (FISH) cytogenetics and array comparative genome hybridization (array-CGH) technologies have enabled more accurate localization of deletion breakpoints. This deletion information combined with the annotation of the human genome structure provides critical information to identify genes responsible for particular phenotypes associated with a syndrome. For example, deletions of the 11p11p12 and 11p13 regions on the short arm of human chromosome (Chr) 11 have been identified in the Potocki–Shaffer syndrome (Shaffer et al. 1993; Bartsch et al. 1996; Potocki and Shaffer 1996) and the Wilm''s tumor- aniridia- genitourinary abnormalities- mental retardation (WAGR) syndrome (Riccardi et al. 1978; Francke et al. 1979; Hittner et al. 1979; Fryns et al. 1981), respectively. Deletion analyses were important in identifying genes associated with clinical features of the syndromes: EXT2 for multiple exostoses and ALX4 for parietal foramina in Potocki–Shaffer syndrome (Ligon et al. 1998; Wu et al. 2000; Wakui et al. 2005), WT1 for Wilm''s tumor, and PAX6 for aniridia in WAGR syndrome (van Heyningen et al. 1985; Glaser et al. 1986, 1992; Fantes et al. 1992). Deletion analyses have also defined the extent of the deleted region in patients with combined Potocki–Shaffer and WAGR syndromes (McGaughran et al. 1995; Brémond-Gignac et al. 2005) as well as microdeletions 3′ to PAX6, which prevent expression of PAX6 and cause aniridia (Lauderdale et al. 2000; D''elia et al. 2007; Davis et al. 2008).The mouse Chr 2 region homologous to the human WAGR region contains the genes Wt1, Rcn1, Pax6, and Elp4. An extensive allelic series at Pax6 has been identified (Bult et al. 2008). Heterozygote Pax6 intragenic null mutants express microphthalmia, iris anomalies, corneal opacities, lens opacities, and lens-corneal adhesions. Homozygotes are anophthalmic and die shortly after birth (Roberts 1967; Hogan et al. 1986). Five deletions in the region have been identified: Pax6Sey-Dey, Pax6Sey-H, Pax6Sey-2H, Pax6Sey-3H, Pax6Sey-4H of which two, Pax6Sey-H (Hogan et al. 1986; Kent et al. 1997; Kleinjan et al. 2002; Webb et al. 2008) and Pax6Sey-Dey (Theiler et al. 1978; Hogan et al. 1987; Glaser et al. 1990), have been well characterized. Heterozygotes for both deletions express belly spotting and a more extreme eye phenotype than that observed for heterozygotes of intragenic Pax6 null mutations. Homozygotes for both deletions are lethal at an early embryonic stage.We were particularly interested in the extreme eye phenotype associated with the Pax6 deletions and considered two alternative hypotheses. Either Pax6 deletions are functionally different from Pax6 intragenic null mutations or deletion of a region linked to but distinct from the Pax6 structural gene affects the eye phenotype.In the present study we identify three new deletions encompassing the Pax6 region of the mouse. They have been assigned the mutant allele symbols Del(2)Pax611Neu/1Neu, Del(2)Pax612Neu/2Neu, and Del(2)Pax613Neu/3Neu and will be referred to throughout this publication as Pax611Neu, Pax612Neu, and Pax613Neu, respectively. All three deletions are homozygous lethal at an early embryonic stage. The deletions differentiate for the extent of the eye abnormality expressed: Pax611Neu heterozygotes express extreme microphthalmia similar to that observed in the Pax6Sey-Dey and Pax6Sey-H deletions. Pax612Neu and Pax613Neu heterozygotes express the milder eye abnormality seen in heterozygous intragenic null mutants. For all three deletions, heterozygotes do not express belly spotting. Genetic, phenotypic, and molecular characterization of the deletions allowed us to identify regions associated with the array of phenotypes in these contiguous gene deletions.  相似文献   

12.
13.
14.
Population genetics of foxtail millet and its wild ancestor   总被引:1,自引:0,他引:1  

Background

The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the out m233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans.

Results

In this study, we show that the severe reduction of eye size in the out m233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in out m233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in out m233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed.

Conclusions

This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish out m233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.  相似文献   

15.
16.
Microphthalmia/anophthalmia is a clinically heterogeneous disorder of eye formation, ranging from small size of a single eye to complete bilateral absence of ocular tissues. The genetic defect underlying isolated autosomal recessive microphthalmia/anophthalmia is yet unclear. We studied four families (two of Arab origin, one of Bedouin origin, and one of Persian-Jewish origin) with autosomal recessive microphthalmia/anophthalmia and no associated eye anomalies, and one Syrian–Jewish family with associated colobomas. Assuming a founder effect in each of the families, we performed homozygosity mapping using polymorphic markers adjacent to human homologues of genes known to be associated with eye absence in various species, namely EYA1, EYA2, EYA3, SIX4, SIX6, PAX6 and CHX10. No association was found with EYA1, EYA2, EYA3, SIX6 or PAX6. In two families, linkage analysis was consistent with possible association with SIX4, but no mutations were found in the coding region of the gene or its flanking intron sequences. In three of the five families, linkage analysis followed by sequencing demonstrated that affected individuals in each family were homozygous for a different CHX10 aberration: a mutation in the CVC domain and a deletion of the homeobox domain were found in two Arab families, and a mutation in the donor-acceptor site in the first intron in the Syrian-Jewish family. There was phenotypic variation between families having different mutations, but no significant phenotypic variation within each family. It has been previously shown that mutations in a particular nucleotide in CHX10 are associated with an autosomal recessive syndrome of microphthalmia/anophthalmia with iris colobomas and cataracts in two families. We now show that different mutations in other domains of the same gene underlie isolated microphthalmia/anophthalmia.  相似文献   

17.
18.
19.
The eyes are riched in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n−6)] and docosahexaenoic acid [DHA; 22:6 (n−3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA.  相似文献   

20.
The t(2;13) chromosomal translocation is found in the majority of human alveolar rhabdomyosarcomas (RMS). The resulting PAX3-FKHR fusion protein contains PAX3 DNA-binding domains fused to the potent transactivation domain of FKHR, suggesting that PAX3-FKHR functions to deregulate PAX3-specific target genes and signaling pathways. We previously developed transgenic mice expressing PAX3-FKHR under the control of mouse Pax3 regulatory sequences to test this hypothesis. We reported that PAX3-FKHR interferes with normal Pax3 developmental functions, with mice exhibiting neural tube and neural crest abnormalities that mimic those found in Pax3-deficient Splotch mice. Here we expanded those studies to show that developmental expression of PAX3-FKHR results in aberrant myogenesis in the developing somites and neural tube, leading to ectopic skeletal muscle formation in the mature spinal cord. Gene expression profiling indicated that PAX3-FKHR expression in the developing neural tube induces a myogenic pattern of gene expression at the expense of the normal neurogenic program. Somite defects in PAX3-FKHR transgenic animals resulted in skeletal malformations that included rib fusions and mis-attachments. As opposed to the neural tube defects, the severity of the rib phenotype was rescued by reducing Pax3 levels through mating with Splotch mice. Embryos from the transgenic line expressing the highest levels of PAX3-FKHR had severe neural tube defects, including exencephaly, and almost half of the embryos died between gestational ages E13.5-E15.5. Nearly all of the embryos that survived to term died after birth due to severe spina bifida, rather than the absence of a muscular diaphragm. These studies reveal a prominent role for PAX3-FKHR in disrupting Pax3 functions and in deregulating skeletal muscle development, suggesting that this fusion protein plays a critical role in the pathogenesis of␣alveolar RMS by influencing the commitment␣and differentiation of the myogenic cell lineage.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号