首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the “sphingolipid rheostat”, producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

2.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

3.
Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases   总被引:8,自引:0,他引:8  
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the "sphingolipid rheostat", producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

4.
Sphingosine kinase,sphingosine-1-phosphate,and apoptosis   总被引:31,自引:0,他引:31  
The sphingolipid metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) play an important role in the regulation of cell proliferation, survival, and cell death. Cer and Sph usually inhibit proliferation and promote apoptosis, while the further metabolite S1P stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determines cell fate. The relevance of this "sphingolipid rheostat" and its role in regulating cell fate has been borne out by work in many labs using many different cell types and experimental manipulations. A central finding of these studies is that Sph kinase (SphK), the enzyme that phosphorylates Sph to form S1P, is a critical regulator of the sphingolipid rheostat, as it not only produces the pro-growth, anti-apoptotic messenger S1P, but also decreases levels of pro-apoptotic Cer and Sph. Given the role of the sphingolipid rheostat in regulating growth and apoptosis, it is not surprising that sphingolipid metabolism is often found to be disregulated in cancer, a disease characterized by enhanced cell growth, diminished cell death, or both. Anticancer therapeutics targeting SphK are potentially clinically relevant. Indeed, inhibition of SphK has been shown to suppress gastric tumor growth [Cancer Res. 51 (1991) 1613] and conversely, overexpression of SphK increases tumorigenicity [Curr. Biol. 10 (2000) 1527]. Moreover, S1P has also been shown to regulate angiogenesis, or new blood vessel formation [Cell 99 (1999) 301], which is critical for tumor progression. Furthermore, there is intriguing new evidence that S1P can act in an autocrine and/or paracrine fashion [Science 291 (2001) 1800] to regulate blood vessel formation [J. Clin. Invest. 106 (2000) 951]. Thus, SphK may not only protect tumors from apoptosis, it may also increase their vascularization, further enhancing growth. The cytoprotective effects of SphK/S1P may also be important for clinical benefit, as S1P has been shown to protect oocytes from radiation-induced cell death in vivo [Nat. Med. 6 (2000) 1109]. Here we review the growing literature on the regulation of SphK and the role of SphK and its product, S1P, in apoptosis.  相似文献   

5.
ENOX2 (tNOX), a tumor‐associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin‐3‐gallate (EGCg) and the isoflavene phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2‐mediated alterations of cytosolic amounts of NAD+ and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1‐phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD+ inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage. J. Cell. Biochem. 110: 1504–1511, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Sphingolipids are components of all eukaryotic cells that play important roles in a wide variety of biological processes. Ceramides and sphingosine-1-phosphate (S1P) are signaling molecules that regulate cell fate decisions in a wide array of species including yeast, plants, vertebrates, and invertebrates. Ceramides favor anti-proliferative and cell death pathways such as senescence and apoptosis, whereas S1P stimulates cell proliferation and survival pathways. The control of cell fate by these two interconvertible lipids has been called the sphingolipid rheostat or sphingolipid biostat. Sphingosine kinase, the enzyme that synthesizes S1P, is a crucial enzyme in regulation of the balance of these sphingolipids. Sphingosine kinase has been shown to play dynamic roles in the responses of cells to stress, leading to modulation of cell fate through a variety of signaling pathways impinging on the processes of cell proliferation, apoptosis, autophagy and senescence. This review summarizes the roles of sphingosine kinase signaling in these processes and the mechanisms mediating these responses. In addition, we discuss the evidence tying sphingosine kinase-mediated stress responses to the process of aging.  相似文献   

7.
An Arabidopsisprotoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsismesophyll protoplasts expressing murine BaxcDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivotargeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N-acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsisnucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of ArabidopsisBax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.  相似文献   

8.
9.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts as both an extracellular ligand for the endothelial differentiation gene-1 (EDG-1) G-protein coupled receptor (GPCR) family and as an intracellular messenger. Cellular levels of S1P are low and tightly regulated in a spatial-temporal manner not only by sphingosine kinase (SPHK) but also by degradation catalyzed by S1P lyase, specific S1P phosphohydrolases, and by general lipid phosphate phosphohydrolases (LPPs). LPPs are characterized as magnesium-independent, insensitive to inhibition by N-ethylmaleimide (NEM) and possessing broad substrate specificity with a variety of phosphorylated lipids, including S1P, phosphatidic acid (PA), and lysophosphatidic acid (LPA). LPPs contain three highly conserved domains that define a phosphohydrolase superfamily. Recently, several specific S1P phosphohydrolases have been identified in yeast and mammalian cells. Phylogenetic and biochemical analyses indicate that these enzymes constitute a new subset of the LPP family. As further evidence, S1P phosphohydrolases exhibit high specificity for phosphorylated sphingoid bases. Enforced expression of S1P phosphohydrolase alters the cellular levels of sphingolipid metabolites in yeast and mammalian cells, increasing sphingosine and ceramide, bioactive sphingolipids that often have opposing biological actions to S1P. By regulating the cellular ratio between ceramide/sphingosine and S1P, S1P phosphohydrolase is poised to be a critical factor in cell survival/cell death decisions. Indeed, expression of S1P phosphohydrolase in mammalian cells increases apoptosis, whereas deletion of S1P phosphohydrolases in yeast correlates with resistance to heat stress. In this review, we discuss the role of phosphohydrolases in the metabolism of S1P and how turnover of S1P can regulate sphingolipid metabolites signaling.  相似文献   

10.
Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.  相似文献   

11.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

12.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

13.
Recent studies suggest that sphingolipid metabolism is altered during type 2 diabetes. Increased levels of the sphingolipid ceramide are associated with insulin resistance. However, a role for sphingolipids in pancreatic beta cell function, or insulin production, and release remains to be established. Our studies in MIN6 cells and mouse pancreatic islets demonstrate that glucose stimulates an intracellular rise in the sphingolipid, sphingosine 1-phosphate (S1P), whereas the levels of ceramide and sphingomyelin remain unchanged. The increase in S1P levels by glucose is due to activation of sphingosine kinase 2 (SphK2). Interestingly, rises in S1P correlate with increased glucose-stimulated insulin secretion (GSIS). Decreasing S1P levels by treatment of MIN6 cells or primary islets with the sphingosine kinase inhibitor reduces GSIS. Moreover, knockdown of SphK2 alone results in decreased GSIS, whereas knockdown of the S1P phosphatase, Sgpp1, leads to a rise in GSIS. Treatment of mice with the sphingosine kinase inhibitor impairs glucose disposal due to decreased plasma insulin levels. Altogether, our data suggest that glucose activates SphK2 in pancreatic beta cells leading to a rise in S1P levels, which is important for GSIS.  相似文献   

14.
Sphingosine kinase is a key enzyme in sphingolipid metabolism, catalysing the conversion of sphingosine or dihydrosphingosine into sphingosine‐1‐phosphate or dihydrosphingosine‐1‐phosphate respectively. In mammals, sphingosine‐1‐phosphate is a powerful signalling molecule regulating cell growth, differentiation, apoptosis and immunity. Functions of sphingosine kinase or sphingosine‐1‐phosphate in pathogenic protozoans are virtually unknown. While most organisms possess two closely related sphingosine kinases, only one sphingosine kinase homologue (SKa) can be identified in Leishmania, which are vector‐borne protozoan parasites responsible for leishmaniasis. Leishmania SKa is a large, cytoplasmic enzyme capable of phosphorylating both sphingosine and dihydrosphingosine. Remarkably, deletion of SKa leads to catastrophic defects in both the insect stage and mammalian stage of Leishmania parasites. Genetic and biochemical analyses demonstrate that proper expression of SKa is essential for Leishmania parasites to remove toxic metabolites, to survive stressful conditions, and to cause disease in mice. Therefore, SKa is a pleiotropic enzyme with vital roles throughout the life cycle of Leishmania. The essentiality of SKa and its apparent divergence from mammalian counterparts suggests that this enzyme can be selectively targeted to reduce Leishmania infection.  相似文献   

15.
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), formed by phosphorylation of sphingosine, has been implicated in cell growth, suppression of apoptosis, and angiogenesis. In this study, we have examined the contribution of intracellular S1P to tumorigenesis of breast adenocarcinoma MCF-7 cells. Enforced expression of sphingosine kinase type 1 (SPHK1) increased S1P levels and blocked MCF-7 cell death induced by anti-cancer drugs, sphingosine, and TNF-alpha. SPHK1 also conferred a growth advantage, as determined by proliferation and growth in soft agar, which was estrogen dependent. While both ERK and Akt have been implicated in MCF-7 cell growth, SPHK1 stimulated ERK1/2 but had no effect on Akt. Surprisingly, parental growth of MCF-7 cells was only weakly stimulated by S1P or dihydro-S1P, ligands for the S1P receptors which usually mediate growth effects. When injected into mammary fat pads of ovariectomized nude mice implanted with estrogen pellets, MCF-7/SPHK1 cells formed more and larger tumors than vector transfectants with higher microvessel density in their periphery. Collectively, our results suggest that SPHK1 may play an important role in breast cancer progression by regulating tumor cell growth and survival.  相似文献   

16.
Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine‐1‐phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA‐IR index (homeostasis model of insulin resistance) (r = ?0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue. J. Cell. Physiol. 227: 550–557, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long‐chain base intermediates. The formation and function of ceramide phosphates (Cer‐Ps) in chilled Arabidopsis were explored. Cer‐Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold‐stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer‐P occurs in cold‐stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer‐P formation is independent of long‐chain base phosphate (LCB‐P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA‐dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer‐P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress.  相似文献   

18.
Sphingolipids are present in membranes of all eukaryotic cells. Bioactive sphingolipids also function as signaling molecules that regulate cellular processes such as proliferation, migration, and apoptosis. Human cytomegalovirus (HCMV) exploits a variety of cellular signaling pathways to promote its own replication. However, whether HCMV modulates lipid signaling pathways is an essentially unexplored area of research in virus-host cell interactions. In this study, we examined the accumulation of the bioactive sphingolipids and the enzymes responsible for the biosynthesis and degradation of these lipids. HCMV infection results in increased accumulation and activity of sphingosine kinase (SphK), the enzyme that generates sphingosine 1-phosphate (S1P) and dihydrosphingosine 1-phosphate (dhS1P). We also utilized a mass spectrometry approach to generate a sphingolipidomic profile of HCMV-infected cells. We show that HCMV infection results in increased levels of dhS1P and ceramide at 24 h, suggesting an enhancement of de novo sphingolipid synthesis. Subsequently dihydrosphingosine and dhS1P decrease at 48 h consistent with attenuation of de novo sphingolipid synthesis. Finally, we present evidence that de novo sphingolipid synthesis and sphingosine kinase activity directly impact virus gene expression and virus growth. Together, these findings demonstrate that host cell sphingolipids are dynamically regulated upon infection with a herpes virus in a manner that impacts virus replication.  相似文献   

19.
Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid metabolite that exerts important effects on numerous cellular events via cell surface receptors, S1P(1-5). S1P influences differentiation, proliferation, and migration during vascular development. However, the effects of S1P signaling on early cardiac development are not well understood. To address this issue, we examined the expression of S1P regulatory enzymes and S1P receptors during cardiac development. We observed that enzymes that regulate S1P levels, sphingosine kinase and sphingosine-1-phosphate phosphatase, are expressed in the developing heart. In addition, RT-PCR revealed that four of the five known S1P receptors (S1P(1-4)) are also expressed in the developing heart. Next, effects of altered S1P levels on whole embryo and atrioventricular (AV) canal cultures were investigated. We demonstrate that inactivation of the S1P producing enzyme, sphingosine kinase, leads to cell death in cardiac tissue which is rescued by exogenous S1P treatment. Other experiments reveal that increased S1P concentration prevents alterations in cell morphology that are required for cell migration. This effect results in reduced cell migration and inhibited mesenchymal cell formation in AV canal cushion tissue. These data indicate that S1P, locally maintained within a specific concentration range, is an important and necessary component of early heart development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号